期刊文献+

基于ImageNet预训练卷积神经网络的遥感图像检索 被引量:30

Remote Sensing Image Retrieval Using Pre-trained Convolutional Neural Networks Based on ImageNet
原文传递
导出
摘要 高分辨率遥感图像内容复杂,细节信息丰富,传统的浅层特征在描述这类图像上存在一定难度,容易导致检索中存在较大的语义鸿沟。本文将大规模数据集ImageNet上预训练的4种不同卷积神经网络用于遥感图像检索,首先分别提取4种网络中不同层次的输出值作为高层特征,再对高层特征进行高斯归一化,然后采用欧氏距离作为相似性度量进行检索。在UC-Merced和WHU-RS数据集上的一系列实验结果表明,4种卷积神经网络的高层特征中,以CNN-M特征的检索性能最好;与视觉词袋和全局形态纹理描述子这两种浅层特征相比,高层特征的检索平均准确率提高了15.7%~25.6%,平均归一化修改检索等级减少了17%~22.1%。因此将ImageNet上预训练的卷积神经网络用于遥感图像检索是一种有效的方法。 High resolution remote sensing images have complicated content and abundant detail information.Large semantic gaps will occur as such images are difficult to describe using traditional shallow features.This paper proposes a method using four different CNNs pre-trained on ImageNet to in remote sensing image retrieval.High-level features are extracted from different layers of the four CNNs.A Gaussian normalization method is adopted to normalize high-level features,and Euclidean distance is used as the similarity measurement.A serial of experiments carried on the UC-Merced and WHU-RS datasets show that CNN-M feature achieves the best retrieval performance with CNN features.Compared with the visual bag of words and global morphological texture descriptors,the mean average precision of CNN features was 15.7%-25.6% higher than that of shallow features.The average normalizedmodified retrieval rank of CNN features was 17%-22.1% lower than that of shallow features.Therefore the pre-trained convolutional neural network is effective for high-resolution remote sensing image retrieval.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第1期67-73,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41261091) 江西省教育厅科技项目(GJJ13482) 江西省自然科学基金(20151BAB207062)~~
关键词 遥感图像 检索 卷积神经网路 预训练 remote sensing image retrieval convolutional neural networks pre-trained
  • 相关文献

参考文献1

二级参考文献12

  • 1Molinier M, I.aaksonen J, Hame T. Detecting Man-made Structures and Changes in Satellite Im- agery with a Content-Based Information Retrieval System Built on Self-organizing Maps [J]. 1EEE Transactions on Geosciences and Remote Sensing, 2007, 45(4): 861-874.
  • 2Samal A, Bhatia S, Vadlamani P, et al. Searching Satellite Imagery with Integrated Measures [J]. Pattern Recognition, 2009,42(11) :2 502-2 513.
  • 3Shyu C R, Klarie M, Scott G J, et al. GeolRIS: Geospatial Information Retrieval and Indexing Sys- tem-content Mining, Semantics Modeling, and Complex Queries[J]. IEEE Transactions on Geo- sciences and Remote Sensing, 2007, 45(4) : 839 852.
  • 4Datcu M, Dasehiel H, Pelizzari A, et a}.. Informa tion Mining in Remote Sensing Image Archives: System Concepts[J], IEEE Transactions on Geosci- encesand Remote Sensing, 2003, 41(12): 2 923- 2 936.
  • 5Sivic J, Zisserman A. Video Google.. A Text Re- trieval Approach to Object Matching in Videos[C]. The Ninth IEEE International Conference on Corn purer Vision, Washington D C, 2003.
  • 6Nister D,Stewenius H. Scalable Recognition with a Vocabulary Tree[C]. IEEE Computer Society Con- ference on Computer Vision and Pattern Recogni-.tion, Washington D C, 2006.
  • 7Chum O, Philbin J, Sivic J, et al. Total Recall= Automatic Query Expansion with a Generative Fea- ture Model for Object Retrieval[C]. IEEE llth In ternational Conference on Computer Vision, Wash- ington D C, 2007.
  • 8Lowe D. Distinctivelmage Features from Scale in variant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Jegou H, Douze M, Schmid C. Hamming Embed ding and Weak eometric Consistency for I.arge Scale Image Search[C]. European Conference on Computer Vision, France, 2008.
  • 10万雪,张祖勋,柯涛.一种利用零交叉点理论的改进SIFT特征提取算法[J].武汉大学学报(信息科学版),2013,38(3):270-273. 被引量:5

共引文献3

同被引文献317

引证文献30

二级引证文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部