期刊文献+

双向中继系统中基于压缩感知信道估计算法

Two-way relay system based on compressed sensing channel estimation
下载PDF
导出
摘要 针对提高系统传输的频谱利用率问题,采用将压缩感知理论应用于双向中继系统进行信道估计。详细研究在双向中继系统中信道估计算法的设计方法、实现过程,并对广义正交匹配追踪算法(GOMP)与OMP算法及传统的LS信道估计算法进行分析与比较。结果表明GOMP信道估计算法在均方误差(MSE)和误比特率(BER)及需要运行的时间上均较小。在稀疏的信道中,GOMP算法相比于传统LS信道估计算法能有效地提高频谱利用率,相比于OMP算法提高了实时性,降低系统的复杂度。 In order to improve the spectrum efficiency of the system,the compressed sensing theory is applied to the two-way relay system to estimate the channel. The design method and implementation process of the algorithm are studied on in detail,and the GOMP algorithm is compared with the OMP algorithm and the traditional LS channel estimation algorithm. The simulation results confirm that GOMP channel estimation algorithm has a small mean square error( MSE) performance and bit error rate( BER) and time required to run. For sparse channel,the GOMP algorithm can improve the spectrum utilization efficiency compared with the traditional LS channel estimation algorithm,and improve the realtime performance and reduce the complexity of the system compared with the OMP algorithm.
出处 《信息技术》 2018年第2期145-148,共4页 Information Technology
关键词 压缩感知 双向中继系统 GOMP算法 信号重构 信道估计 compressive sensing(CS) two-way relay system GOMP algorithm signal reconstruction channel estimation
  • 相关文献

参考文献8

二级参考文献80

  • 1TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25.
  • 2VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819.
  • 3WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499.
  • 4PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 5TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888.
  • 6DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
  • 7BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124.
  • 8MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415.
  • 9TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666.
  • 10COFFER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans on Communications.2002,50(3):374-377.

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部