期刊文献+

一种改进关联分类算法的研究

Research on an improved associative classification algorithm
下载PDF
导出
摘要 关联分类算法是对数据进行分析处理中的一个分支.本文首先介绍了关联分类代表算法。针对数据中的类存在的关联划分问题,提出了一种改进的关联分类算法。随后,结合相关数据,对数据进行有效分类和预测。同时,对改进后的算法和现有算法进行实验与分析。 Associative classification algorithm is a branch of data analysis and processing. The paper firstly introduces therepresentative algorithm in associative classification. An improved associative classification algorithm is proposed, aiming at solvingthe problem in classifying classes in data. Then combined with the relevant data, the data are effectively classified and predicted. Atthe same time, the improved algorithm and the existing algorithm are experimented and analyzed.
出处 《智能计算机与应用》 2018年第1期175-176,180,共3页 Intelligent Computer and Applications
关键词 关联分类 改进 CBA算法 ACW算法 associative classification improvement CBA algorithm ACW algorithm
  • 相关文献

参考文献4

二级参考文献33

  • 1尹群,王丽珍,田启明.一种基于概率的加权关联规则挖掘算法[J].计算机应用,2005,25(4):805-807. 被引量:18
  • 2Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Datebases[C]//Proc. of VLDB'94. Santiago, Chile: [s. n.], 1994.
  • 3Cai Chun Hing, Fu Ada Wai-Chee, Cheng Chun-hung, et al. Mining Association Rules with Weighted Items[C]//Proc. of International Database Engineering and Applications Symposium. Cardiff, Wales, UK: [s. n.], 1998.
  • 4PANGNING T,MICHAEL S,著.数据挖掘导论[M].范明、范宏建,译.北京:人民邮电出版社,2006:5.
  • 5LIU B, HSU W, MAY. Integrating classification and association rule mining [C]// Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining ( KDD-98). New York: AAAI, 1998: 80 - 86.
  • 6LI W M, HAN J W, PEI J. CMAR: accurate and efficient classification based on multiple class-association rules [C]//Proceedings of the 1st IEEE International Conference on Data Mining (ICDM 2001 ). Washington: IEEE Computer Society, 2001: 369- 376.
  • 7YIN X X, HAN J W. CPAR: classification based on predictive association rules [C]// Proceedings of the 2003 SIAM International Conference on Data Mining (SDM'03). San Francisco: [ s. n.], 2003:34 - 42.
  • 8COENEN F, LENG P. Data structures for association rule mining: t-trees and p-trees [J]. IEEE Transaction in KnowIedge and Data Engineering, 2004, 16(6) : 774 -778.
  • 9COENEN F. LUCS-KDD DN Software (Version 2) [ EB/OL]. [2007 -04 -02]. http://www. csc. liv. ac. uk/- frans/KDD/Software/ LUCS_KDD_DN/.
  • 10AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [C]// Proceeding of the 1994 International Conference on Vary Large Data Bases. Santiago: Morgan Kaufmann, 1994:487 -499.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部