摘要
针对一维常系数对流扩散模型方程,利用有限元基本理论分析,讨论了当含有Robin边界条件时,局部间断有限元方法(LDG方法)的收敛性.证明了当边界条件为Robin边界条件时,LDG方法的误差能量模收敛阶仍可达到k阶.
A local discontinuous Galerkin finite element method(LDG mehod)was presented for one-dimensional convection diffusion equations with Robin boundary conditions of constant coefficients. It is proved that the LDG method was convergence in the energy norm of the error at a rate of hkfor convection diffusion equations with Robin boundary conditions of constant coefficients.
出处
《河南科学》
2018年第1期1-5,共5页
Henan Science
基金
国家自然科学基金项目(11501496)
陕西省教育厅科研计划资助项目(16JK1886)