期刊文献+

一种基于S_Dbw的可变特征算子的改进随机森林算法 被引量:5

Improved Random Forest with S_Dbw Based Variable Feature Extraction Operators
下载PDF
导出
摘要 针对传统随机森林算法中,由于数据集内部差异程度随着节点分裂迅速降低,导致模型过早收敛的问题,提出允许上下特征不一致的改进随机森林算法.该算法根据聚类评估指标S_Dbw对每次二分k-means的结果进行评估,在节点分裂的过程中选择最合适的特征算子计算数据特征以维持节点数据分裂的可靠性和判别性,提高随机森林的判别能力.在此基础上将该算法的输出形式进行结构化,实现从二维向量调整为一个二维概率分布,构造成一个结构化随机森林.实验证明,针对背景中存在类肤色干扰和光照变化的手部检测,该算法可以有效地提高模型的判别能力. With the aim to avoid the prematurity of the traditional random forest,while the inner difference of data set would decrease rapidly with partition,an improved random forest with variable feature extraction operators is proposed.The method would choose a theoretically best feat in the process of splitting of each node,according to the S_Dbw validity index,so as to maintain the reliability and discriminant of the splitting of nodes.Then the output form would be adjusted to construct a structured random forest,and it is applied in the work of hand detection with skin-like color and variable illumination.Experiments show that the proposed algorithm could improve the discriminative ability of the random forest.
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第2期393-395,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金面上项目(61672461)资助 图像与视频的不变性局部结构特征描述及应用研究(61672463)资助
关键词 S_Dbw 特征算子不一致 改进随机森林 结构化 S_Dbw variable feature extraction operators an improved random forest structured random forest
  • 相关文献

参考文献6

二级参考文献36

  • 1于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 2赵华,赵铁军,于浩,张姝.面向动态演化的话题检测研究[J].高技术通讯,2006,16(12):1230-1235. 被引量:17
  • 3丁学仁 蔡庙可.工程中的矩阵理论[M].天津:天津大学出版社,1995.115-118.
  • 4Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002.
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03).
  • 6Jing Yu,Zengchang Qin,Tao Wan,Xi Zhang.Feature integration analysis of bag-of-features model for image retrieval[J]. Neurocomputing . 2013
  • 7O. Déniz,G. Bueno,J. Salido,F. De la Torre.Face recognition using Histograms of Oriented Gradients[J]. Pattern Recognition Letters . 2011 (12)
  • 8Yanwei Pang,Yuan Yuan,Xuelong Li,Jing Pan.Efficient HOG human detection[J]. Signal Processing . 2010 (4)
  • 9Ahonen T,Hadid A,Pietikainen M.Face recognition with local binary patterns. Proceedings of the European Conference on Computer Vision . 2004
  • 10Belhumeur PN,Hespanha JP,Kriegman DJ.Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997

共引文献194

同被引文献36

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部