期刊文献+

非接触变压器磁路模型及结构优化 被引量:5

Reluctance circuit and structure optimization of contactless transformer
下载PDF
导出
摘要 非接触变压器是感应电能传输系统中的核心结构,其耦合系数直接影响系统的电能传递效率,因此对其结构优化一直是研究的重点。本文针对一种应用于轨道交通领域的原、副边结构不对称的非接触变压器,根据线性系统的磁场叠加原理,分析了非接触变压器在副边开路和原边开路时其周围的磁场分布,建立了磁路模型,并推导得到原、副边电感及耦合系数的近似计算公式。基于该计算公式对磁路结构进行定性优化,有限元仿真证明了所提磁路模型和参数计算的正确性。在此基础上,利用该磁路模型,优化非接触变压器的结构,提出梯形绕组截面的绕组布置方式,以提高耦合系数;并对原、副边绕组匝数关系进行优化计算,使系统效率最优。根据以上优化,制作非接触变压器实验样机,在48mm气隙下,非接触变压器的耦合系数达到0.45,30k W非接触供电系统在满载时传输效率达到85.3%。 Contactless transformer is the key component in inductive power transfer( IPT) system and its coupling coefficient( k) will directly affect the power transfer efficiency. Hence,the optimization of the contactless transformer has been the researching focus. This paper studies a contactless transformer applied in movable vehicle with the structure that primary and secondary side are asymmetrical. Magnetic flux distributions for the conditions that the primary or secondary side is open circuit respectively,are analyzed. According to the superposition principle of magnetic field,magnetic reluctance circuit of this contactless transformer is proposed. Then the primary and secondary inductance( Lp,Ls) and mutual inductance( M) are calculated. Based on these formulas,the reluctance circuit structure could be optimized,and the results well agreed with that of Ansys Maxwell,which confirms the magnetic reluctance circuit and the physical character obtained is correct. Furthermore,based on this magnetic reluctance circuit,the trapezoidal windings section of contactless transformer is proposed to improve k and the turn of windings are optimized to enhance the output power. With these optimizations,k reached 0. 45 and efficiency of 85. 3% was achieved with the air gap of 48 mm in 30 k W IPT system experimental platform.
作者 徐罗那 杜玉梅 史黎明 XU Luo-na;DU Yu-mei;SHI Li-ming(Key Laboratory of Power Electronics and Electric Drive,Institute of Electrical Engineering,ChineseAcademy of Sciences,Beijing 100190,China;School of Electronic,Electrical and CommunicationEngineering,University of Chinese Academy of Sciences, Beijing 100049,China)
出处 《电工电能新技术》 CSCD 北大核心 2018年第1期15-22,共8页 Advanced Technology of Electrical Engineering and Energy
基金 国家“十二五”科技支撑计划项目(2013BAG19B00-04-01)
关键词 非接触变压器 磁路模型 绕组截面 耦合系数 contactless transformer magnetic circuit model windings cross section coupling coefficient
  • 相关文献

参考文献8

二级参考文献87

  • 1韩腾,卓放,刘涛,王兆安.可分离变压器实现的非接触电能传输系统研究[J].电力电子技术,2004,38(5):28-29. 被引量:57
  • 2孙跃,王智慧,戴欣,苏玉刚,李良.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59. 被引量:112
  • 3Kim C G, Seo D H, You J S, et al. Design of a contactless battery charger for cellular phone[J]. IEEE Transactions on Industrial Electronics, 2001, 48(6): 1238-1247.
  • 4Choi B, Nho J, Cha H, Ahn T, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140-147.
  • 5Pedder D A G, Brown A D, Skinner J A. A contactless electrical energy transmission system[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 23-30.
  • 6Ghahary A, Cho B H. Design of a transcutaneous energy transmission system using a series resonant converter[J]. IEEE Transactions on Power Electronics, 1992, 7(2): 261-269.
  • 7Jang Y, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 520-527.
  • 8Joung G B, Cho B H. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Transactions on Power Electronics, 1998, 13(6): 1013-1022.
  • 9Sakamoto H, Harada K. A novel circuit for noncontact charging through electro-magnetic coupling [C]. In Proceedings of IEEE PESC 1992, Fukuoka, Japan, 1992: 168-174.
  • 10Abe H, Sakamoto H, Harada K. A noncontact charger using resonant converter with parallel capacitor of the secondary coil[J]. IEEE Transactions on Industrial Applications, 1998, 36(2): 444-451.

共引文献265

同被引文献45

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部