期刊文献+

基于双层DAE-SOM的多指标工况识别方法 被引量:2

Performance recognition method based on multi-index and multi-layer DAE-SOM algorithm
下载PDF
导出
摘要 由于工业过程常常受到扰动等因素影响导致工作点发生偏移,所以及时准确地掌握过程运行状况的变化显得尤为重要。目前的工况识别主要针对是否发生故障或者发生何种故障,很少有文献能够从安全、经济、故障等多方面考虑过程工况。针对这一问题,结合过程的历史数据和相关操作要求,获取不同安全状况、经济状况等的评判标准。基于这些判断准则,使用双层降噪自编码(denoising autoencoder,DAE)方法提取数据特征,并用自组织映射神经网络(self-organizing map,SOM)方法对特征提取后的数据聚类,将过程的状况可视化到二维映射图上。在该方法中,DAE方法可以降低工业过程扰动对数据的影响,而SOM方法能够更好地实现过程性能的可视化监控。通过实验可以发现,基于DAE-SOM的双层映射方法可以很好地判断系统的安全级别以及发生的故障类型、当前系统的经济效益状况等。 As disturbances and other factors often lead to shifting of work point in industrial process, it is particularly important to timely and accurately identify process changes. Current working condition identification methods mainly focus on whether or what fault occurs, but few consider process conditions from viewpoint of safety, economy, fault and other aspects. Decision criteria at different safety and economic conditions were proposed by combination of historical process data and related operational requirements. With these criteria, data characteristics was extracted by DAE method and extracted feature data was clustered by SOM method. Then, the process state was visually projected to two-dimensional maps. In this method, the DAE method can reduce influence of industrial process disturbance on data and the SOM method can better visually monitor process performance. Experimental study showed that the DAE-SOM multi-layer mapping method can determine security level, type of failure, and current economic efficiency of the system.
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第2期769-778,共10页 CIESC Journal
基金 国家自然科学基金重点项目(61333010) 国家自然科学基金面上项目(21376077) 国家自然科学基金优秀青年基金项目(61422303)
关键词 降噪自编码 自组织映射神经网络 性能指标 可视化 双层映射 工况识别 DAE SOM performance index visualization multi-layer mapping condition recognition
  • 相关文献

参考文献4

二级参考文献38

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2于春梅,杨胜波,陈馨,张洪才.多元统计方法在故障诊断中的应用综述[J].计算机工程与应用,2007,43(8):205-208. 被引量:5
  • 3赵旭,阎威武,邵惠鹤.基于核Fisher判别分析方法的非线性统计过程监控与故障诊断[J].化工学报,2007,58(4):951-956. 被引量:17
  • 4张翔,肖小玲,徐光祐.一种确定高斯核模型参数的新方法[J].计算机工程,2007,33(12):52-53. 被引量:12
  • 5Nomikos P, MacGregor J F. Monitoring of batch processes using multi-way principal component analysis [J]. AIChE Journal, 1994, 40 (8) :1361-1375.
  • 6Kresta J, MacGregor J F, Marlin T E. Multivariate statistical monitoring of process operating performance [J]. The Canadian Journal of Chemical Engineering, 1991, 69: 35-47.
  • 7Seholkopf B, Smola A J, Muller K. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10 (5): 1299-1319.
  • 8Lee J M, Yoo C K, Choi S W. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59 (1): 223-234.
  • 9Choi S W, Lee C, Lee J M, Park J H, Lee I B. Fault detection and identification of nonlinear processes based on KPCA[J].Chemometrics and InteLligent Laboratory Systems, 2005, 75:55-67.
  • 10Smola A, Scholkopf B, Muller K R. The connection between regularization operators and support vector kernels [J]. Neural Networks, 1998, 11 (4): 637-649.

共引文献35

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部