期刊文献+

基于内燃机余热回收联产系统变工况特性分析 被引量:4

Part-load performance analysis of cogeneration system for engine waste heat recovery
下载PDF
导出
摘要 回收天然气内燃机的排气余热是提高能源利用率的有效手段。提出一种回收排气余热的朗肯循环耦合吸收式制冷循环的联产系统,并针对内燃机多变工况特点,构建联产系统的变工况仿真模型开展变工况特性研究。结果表明,当内燃机工况从100%下降到40%时,联产系统的当量效率下降2.14%,系统总能效率增量仅下降1.64%,说明此联产系统具有很好的工况适应性。在40%工况下,制冷循环由于溴化锂溶液的结晶而不能正常运行。研究结果为联产系统的实际运行提供理论指导。 Recovering exhaust waste heat of gas fuel engines is an effective way to improve energy utilization rate. A cogeneration system inclusive of a steam Rankine cycle and an absorption refrigeration cycle is proposed to recover exhaust waste heat of a gas fuel engine. An off-design simulation model is established to analyze part-load performance of the cogeneration system in connection with the characteristics of variable engine load. The results show that the equivalent efficiency of cogeneration system is reduced by 2.14% when the engine load drops from 100% to 40%. Moreover, the improvement of system's total efficiency reduces by only 1.64%. Therefore, the cogeneration system shows excellent part-load adaptability. It should be noted that the absorption refrigeration cycle cannot operate normally under 40% engine load due to the crystallization of H2 O-Li Br solution, which can provide the reference for the practical operation.
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第2期792-800,共9页 CIESC Journal
基金 国家自然科学基金项目(51676133)~~
关键词 余热回收 朗肯循环 吸收式制冷循环 数学模拟 变工况 结晶 waste heat recovery Rankine cycle absorption refrigeration cycle mathematical modeling part-load crystallization
  • 相关文献

参考文献5

二级参考文献34

  • 1蔡睿贤,胡自勤.余热锅炉变工况计算[J].工程热物理学报,1990,11(1):17-20. 被引量:28
  • 2J M Gordon, Kim Choon Ng. A General Thermodynamic Model for Absorption Chillers: Theory and Experiment [J]. Heat Recovery and CHP, 1995, 15(1): 73-83.
  • 3Simulation Research Group. DOE-2 Engineering Manual Version2.1A [M]. California: Lawarence Berkeley National Laboratory, 1982.
  • 4Kaushik S C, Arora A. Energy and Exergy Analysis of Single Effect and Series Flow Double Effect LiBr/H20 Absorption Refrigeration Systems [J]. International Journal of Refrigeration, 2009, 32:1247-1258.
  • 5M de Vega, J A Almendros-Ibanez, G Ruiz. Performance of a LiBr-Water Absorption Chiller With Place Heat Exchangers [J].Energy Conversion and Management, 2006, 47: 3393-3407.
  • 6Rabah Gomri, Riad Hakimi. Second Law Analysis of Double Effect Vapor Absorption Cooler System [J]. Energy Conversion and Management, 2008, 49:3343-3348.
  • 7Bari S, Hossain S N. Waste heat recovery from a diesel engine usingshell and tube heat exchanger [J]. Applied Thermal Engineering, 2013 61(2): 355-363.
  • 8Yun K T, Cho H, Luck R, Mago P J. Modeling of reciprocating internal combustion engines for power generation and heat recovery [J]. Applied Energy, 2013, 102:327-335.
  • 9El-Emam R S, Dincer I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle [J]. Applied Thermal Engineering, 2013, 59(1/2): 435 -444.
  • 10Zhang J H, Feng J C, Zhou Y L, Fang F, Yue H. Linear active disturbance rejection control of waste heat recovery systems with organic Rankine cycles [J]. Energies, 2012, 5:5111-5125.

共引文献56

同被引文献10

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部