期刊文献+

基于RBF神经网络的磨机负荷智能控制的研究 被引量:4

Research on the Intelligent Control of Mill Load Based on RBF Neural Network
原文传递
导出
摘要 针对磨机运行过程中的非线性、大惯性、随机干扰大,常规PID控制不能取得很好控制效果的问题,提出用改进的RBF神经网络智能控制方式来控制磨机负荷。根据磨矿工艺流程和操作经验,利用改进的RBF神经网络构建在线辨识的磨机控制系统模型,解决了磨机控制系统难以建模的问题。结合自寻优控制方法,自动寻找磨机最佳负荷,减少磨机负荷的扰动,使磨机负荷维持稳定。实验结果表明,该控制方法能够很好地适应外界因素的变化,消除运行过程中的干扰,增强磨机系统的鲁棒性,使磨机保持稳定运行,提高磨矿效率,改善磨矿分级效果。 Aimed at the problems of mill in running process, including nonlinearity, large inertia, strong random interference,and poor control effect" of conventional PID control, an intelligent control method of improved RBF neural network was pro- posed to control mill load. Based on the technological process and operation experience of grinding, the improved RBF neural network was used to build the online identification model of mill control system, so as to solve the problem that the mill control system was difficult to be modeled. Combined with the self optimizing control method, the optimum load of mill was automati- cally searched, the disturbance of mill load was reduced, and the mill load was kept stable. The experimental results showed that this control method could well adapt to the change of external factors, eliminate the interference in the operation process, enhance the robustness of the mill system, maintain the stable operation of mill, as well as improve the grinding efficiency and classification effect.
作者 邓展 王建民
出处 《矿业研究与开发》 CAS 北大核心 2018年第2期89-94,共6页 Mining Research and Development
关键词 RBF神经网络 磨机负荷 最佳逼近 全局最优 磨矿分级 RBF neural network, Mill load, Optimal approximation, Global optimum, Grinding classification
  • 相关文献

参考文献9

二级参考文献82

共引文献136

同被引文献69

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部