期刊文献+

非均匀噪声背景下的欠定DOA估计方法 被引量:5

Underdetermined direction of arrival estimation with nonuniform noise
下载PDF
导出
摘要 针对非均匀噪声背景下欠定波达方向(direction of arrival,DOA)估计问题,结合互质阵列的结构优势,提出了基于全变分范数最小化的DOA估计方法。首先利用连续差联合阵列与连续波程差一一对应的特性,构造出新的阵列接收数据,阵列孔径得到扩展;然后将其转化为一个联合优化问题,在代价函数中利用全变分范数和L1范数惩罚项分别对角度的稀疏性和噪声项进行约束;最后通过求解相应的凸优化问题以及多项式求根得到DOA的高精度估计。与现有方法相比,所提方法不仅无需进行预白化处理,而且考虑了连续角度域内的所有角度信息而不是对角度域进行离散化,有效避免了模型失配对估计性能的影响,提高了估计精度和分辨率。仿真实验验证了所提方法的有效性与优越性。 For the problem of underdetermined direction of arrival(DOA)estimation with nonuniform noise,a DOA estimation method is proposed with coprime array based on total variation norm minimization.Firstly,received data is constructed by using the property that the consecutive difference coarray is corresponding to the consecutive wavepath difference,and the array aperture is extended.Then,ajoint optimization based on total variation norm is constructed,and add a total variation norm penalty on the sparsity of angle and L1 norm penalty on noise.Finally,the estimation of DOA is achieved by solving the corresponding convex optimization problem and polynomial rooting.Compared with the existing methods,the proposed method not only does not need the pre-whitening process but also considers a continuous range of possible DOA instead of discretizing this range onto a grid,off-grid effects can be neglected,thus precision and resolution of DOA estimation can be improved.Extensive simulations show that the effectiveness and superiority of the proposed method.
作者 吴晨曦 张旻 王可人 WU Chenxi;ZHANG Min;WANG Keren(College of Electronic Engineering, National University of Defense Technology, He f ei 230037, Chin)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第3期498-503,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61171170) 安徽省自然科学基金(1408085QF115)资助课题
关键词 阵列信号处理 波达方向估计 互质阵列 非均匀噪声 全变分范数 array signal processing direction of arrival (DOA) estimation coprime array nonuniformnoise total variation norm
  • 相关文献

参考文献2

二级参考文献27

  • 1张小飞,徐大专.一种新的盲联合角度-时延估计方法[J].哈尔滨工业大学学报,2006,38(11):1893-1897. 被引量:3
  • 2Chiao E C, I.orenzelli F, Kung Y. Stochastic maximun likelihood DOA estimation in the presence of unkown non uniform noise[J]. IEEE Transactions on Signal Process ing, 2008, 56(7) 1 : 3038-3044.
  • 3Burg J P, Luenberger D G, Wenger D L. Estimation of structured covariance matrices[J]. Proceeding of IEEE,1982, 70(9): 963-974.
  • 4Goossens R, Hendrik R. Direction-of arrival and polariza tion estimation with uniform circular arrays in the presence of mutual coupling [J]. AEU-International Journal of Electronics and Communications, 2008, 62(3):199-206.
  • 5Manikas A, Proukakis C, I.efkaditis V. Investive study of planar array ambiguities based on "Hyperhelical" parameterization[J]. IEEE Transactions on Signal Processing, 1999, 47(6):1532-1541.
  • 6Moody M P. Direction of arrival estimation using a sparse circular array and multiplicative beamforming[J]. IEEE Transactions on Antennas and Propagation, 1983, 31 (4) : 678- 682.
  • 7Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9) 2395-2407.
  • 8Belloni F, Koivunen V. Beamspace transform for UCA: Error analysis and bias reduction [J]. IEEE Transactions on Signal Processing, 2006, 54(8): 3078-3089.
  • 9Belloni F, Richter A, Koivunen V. DoA estimation via manifold separation for arbitrary array structures[J]. IEEE Transactions on Signal Processing, 2007, 55 (10) : 4800-4810.
  • 10Goossens R, Rogier H, Werbrouck S. UCA root MUSIC with sparse uniform circular arrays[J]. IEEE Transac tions on Signal Processing, 2008, 56(8): 4095-4099.

共引文献13

同被引文献15

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部