期刊文献+

基于边缘检测与模式识别的车脸识别算法 被引量:6

Car Face Recognition Algorithm Based on Edge Detection and Pattern Recognition
原文传递
导出
摘要 为了解决当前车辆目标成像效果差且光照干扰强,导致智能系统识别车辆能力不足的问题,提出了基于边缘检测与模式识别的车脸识别算法。首先,基于Lab颜色空间转换与Canny边缘检测,设计车辆前脸区域检测机制,得到车脸区域图像。然后,基于粗糙集描述和Adaboost分类器,对车脸特征完成训练,建立强识别器,准确识别车脸。最后,基于开源图像库Aforge.NET和C#语言实现算法,开发出瀑布结构标准软件系统。实验测试结果显示:与当前车脸识别技术相比,算法拥有更高的准确性与稳定性。 In order to solve the problem of poor car reorganization ability of intelligent systems induced by poor imaging performance and strong light interference, a car face recognition algorithm based on edge detection and pattern recognition is proposed in this paper. Firstly, the vehicle front area detection mechanism is designed based on Lab color space conversion and Canny edge detection to get a car face area image. Then the vehicle face features are trained based on the rough set description and the Adaboost classifier to build strong recognizer for accurately recognizing the car face. Finally, a waterfall structure standard software system has been developed based on open-source image library Aforge.NET and C# language to implement the algorithm. Experimental results show that this algorithm has higher accuracy and stability than the current mainstream vehicle recognition technoloav.
作者 徐骏骅
出处 《控制工程》 CSCD 北大核心 2018年第2期357-361,共5页 Control Engineering of China
关键词 车脸识别 Lab颜色空间 CANNY边缘检测 粗糙集 ADABOOST分类器 Car face recognition Lab color space Canny edge detection rough set Adaboost classifier
  • 相关文献

参考文献5

二级参考文献45

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2GonzalezRC等著,阮秋琦等译.数字图像处理(第二版)[M].北京:电子工业出版,2003.
  • 3Nadimi S, Bhanu B. Moving Shadow Detection Using A Physics Based Approach [J]. Pattern Recognition, 2002, (2)701 -704.
  • 4Trivedi M, Bhonsle S, Gupta A. Database Architecture For Auton- omous Transportation Agents For On - Scene Networked Incident Management(Aton) [ J ]. Pattern Recognition, 2000, (4) 664 - 667.
  • 5Prati A, Mikic I, Grana C, Trivedi M. Shadow Detection Algo- rithms For Traffic Flow Analysis A Comparative Study [ J ]. Intelli- gent Transportation Systems, 2001:340 - 345.
  • 6Salvador E, Cavallaro A, Ebrahimi T. Cast Shadow Segmentation Using Invariant Color Features [ J ]. Computer Vision and Image Understanding, 2004, 2 (95) : 238 - 259.
  • 7Geusebroek J, Smeulders A W M, et al. Measurement of Color In- variants [ J ]. Computer Vision and Pattern Recognition, 2000, (1) :50 -57.
  • 8蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 9Dlagnekov L. Video-based car surveillance: license plate, make, and model recognition[D]. San Diego: University of California, 2005.
  • 10Kato T, Ninomiya Y, Masaki I. Preceding vehicle recognition based on learning from sample images[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 252-260.

共引文献37

同被引文献30

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部