期刊文献+

大数据聚类算法研究 被引量:4

Study on the big data clustering algorithm
下载PDF
导出
摘要 随着大数据时代的来临,数据量不断地增加,对大数据环境下的数据进行有效的聚类已经成为现阶段的一个研究热点。文章围绕这一课题,从介绍大数据环境下的特点以及对算法的处理要求开始,对面向大数据的聚类算法的划分进行简单的介绍,指出其中的问题,并对大数据下的有效聚类算法的划分进行展望,希望能够借此加深对于聚类算法的理解。 With the advent of big data era, the amount of data has been increasing constantly. To effectively cluster data in bigdata environment has become a research hotspot at this stage. This paper focuses on this topic, starting from the introduction of thecharacteristics of big data environment and the processing requirements of the algorithm, introduces the division of big data-orientedclustering algorithm briefly, points out the problems and analyzes the effective clustering algorithm, and hopes to deepen the understandingof clustering algorithm.
机构地区 郑州财经学院
出处 《无线互联科技》 2018年第4期107-108,共2页 Wireless Internet Technology
关键词 大数据 聚类算法 划分 big data clustering algorithm division
  • 相关文献

参考文献2

二级参考文献17

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2Ruspini E H. Anew Approach to Clustering[J]. Information and Con- trol, 1969, 15(1).
  • 3Dunn J C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact well-separated Clusters[J]. Journal of Cybernet- ics, 1973, 3(3).
  • 4Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algo- rithms[M]. New York: Plenum, 1981.
  • 5Frigui H, Krishnapuram R. Clustering by Competitive Agglomeration [J]. Pattern Recognition, 1997, 30(7).
  • 6Frank A, Asuncion A. UCI Machine Learning Repository[R]. Califor- nia:University of California, School of Information and Computer Sci- ence, 2010.
  • 7PAL N R, Bezdek J C. On Cluster Validity for the Fuzzy c-means model[J]. IEEE Trans on Fuzzy Systems, 1995, 3(3).
  • 8Strhl A, Ghosh J. Cluster Ensembles-A Knowledge Reuse Frame- work for Combining Multiple Partitions[J]. Journal of Machine Learn- ing Research, 2002, 3(12).
  • 9Randa W M. Objective Criteria for the Evaluation of Clustering Meth- ods[J].Journal of the American Statistical Association, 1971,66(336).
  • 10张宇,吴昊,陈怀新.一种新的基于粒子群密度的聚类算法[J].电讯技术,2008,48(8):17-21. 被引量:1

共引文献26

同被引文献24

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部