期刊文献+

基于小波包分析和SVM的透平机振动故障诊断研究 被引量:4

Turbine Vibration Fault Diagnosis Research Based On Wavelet Packet Analysis and SVM
下载PDF
导出
摘要 针对海上石油平台透平发电机振动信号的非平稳特性以及获得故障诊断样本数据较困难的特点,该文提出了一种基于小波包分析和SVM的故障诊断方法。首先将采样信号通过小波包分析去噪,即通过Mallat塔式算法对信号进行小波分解再重构,重构后的故障诊断子频带信号通过EMD算法提取故障诊断特征向量,并以此训练SVM。试验结果表明基于小波包分析和SVM的方法具有较高的精度和较高的诊断效率。 According to the non-stationary characteristics of offshore oil platform and turbine generator vibration signal characteristics is difficult to fault diagnosis of the sample data. This paper presents a fault diagnosis method based on wavelet packets analysis and SVM. Firstly,the sampling signal by wavelet analysis denouncing,the wavelet decomposition of the signal is reconstructed by Mallat tower algorithm. The fault diagnosis of the sub-band signal reconstruction by the EMD algorithm to extract the characteristic vector of fault diagnosis,and to train the SVM. The results show that the method based on wavelet packet analysis and SVM has higher precision and higher diagnosis efficiency.
出处 《自动化与仪表》 2018年第2期54-58,共5页 Automation & Instrumentation
关键词 小波包分析 透平机振动故障 EMD算法 SVM wavelet packet analysis turbine vibration fault EMD algorithm SVM
  • 相关文献

参考文献9

二级参考文献80

  • 1杨青,孙佰聪,朱美臣,杨青川,刘念.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. 被引量:13
  • 2陆爽,李萌.基于小波神经网络的滚动轴承故障诊断[J].化工机械,2004,31(3):155-158. 被引量:12
  • 3王国栋,张建宇,高立新,胥永刚,张雪松.小波包神经网络在轴承故障模式识别中的应用[J].轴承,2007(1):31-34. 被引量:17
  • 4高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 5张龙照 邱阿瑞.用频谱分析方法检测异步电机转子故障[J].电工技术学报,1987,2(4).
  • 6梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1996..
  • 7Norden E, Huang, Shen Zhen, et al. The Empirical Mode Decomposition and the H ilbert Spectrum for Nonlinear and non Stationary Time Series Analysis [J]. Proc Royal Society Lond, 1998,454A: 903-995.
  • 8H uang N E. Review of empirical mode decomposition[C]. Proceedings of SPIE Olando, USA,2001:71-80.
  • 9[3]Rai V K,Mohanty A R Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert-Huang Transform[J].Mechanical Systems and Signal Processing,2007,21(6):2607-2615.
  • 10[5]Tse P W,Gontar S,Wang X J.Enhancod Eigonvector Algorithm for Recovering Multiple Sonrces of Vibration Signals in Machine Fault Diagnosis[J].Mechanical Systems and Signal Processing,2007,21 (7):2 794-2 813.

共引文献151

同被引文献45

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部