期刊文献+

基于改进蚁群算法的TSP问题研究 被引量:8

Research on the TSP Problem Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 蚁群算法作为解决TSP中组合优化问题方案,其搜索路径能力较其它算法优异,但传统蚁群算法的选取策略较随机,导致进化速度慢。为了优化传统蚁群算法速度较慢、过早收敛以致停滞现象,针对概率选取公式随机搜索下一节点,以延缓其收敛速度。对信息素调节公式进行更新以提高蚁群的搜索能力。实验结果表明,改进算法在最短路径、平均路径和搜索最短路径时间上较蚁群算法提高很大,改进的蚁群算法能有效提高算法的收敛速度和搜索能力。 The ant colony algorithm in solving TSP as a combinatorial optimization problem,its ability to search path than other algorithms in terms of a better,but the traditional ant colony algorithm is a random selection of strategy,lead to evolution slower.In order to optimize the speed of the traditional ant colony algorithm,the speed of the algorithm has been slow to stop.According to the probability selection formula,we randomly searched the next city,so we reintroduced the formula to delay its convergence rate.Secondly,the adjustment formula of pheromone is updated to improve the search ability of ant colony.Experiments show that improved algorithm in the shortest path,the average shortest path and the search path time than ant colony algorithm is improved greatly,which confirmed that the proposed algorithm can effectively improve the convergence speed and search ability of the algorithm.
作者 许能闯
出处 《软件导刊》 2018年第2期56-59,共4页 Software Guide
关键词 蚁群算法 正反馈 信息素 收敛速度 TSP问题 ant colony algorithm positive feedback pheromone speed of convergence the TSP problem
  • 相关文献

参考文献6

二级参考文献68

  • 1赵宏立,庞小红,吴智铭.基因块编码的并行遗传算法及其在TSP中的应用[J].上海交通大学学报,2004,38(z1):213-217. 被引量:10
  • 2高尚.解旅行商问题的混沌蚁群算法[J].系统工程理论与实践,2005,25(9):100-104. 被引量:44
  • 3杨华芬,魏延.一种求解TSP问题的改进遗传算法[J].重庆工学院学报,2007,21(9):86-90. 被引量:5
  • 4RUSSELL R A. An effective heuristic for the m-tour traveling salesman problem with some side conditions[ J]. Operations Research, 1977,25(3) :517-524.
  • 5BEKTAS T. The multiple traveling salesman problem: an overview of formulations and solution procedures [ J ]. Omega, 2006,34 ( 3 ) : 209-219.
  • 6LIU Wei-min, LI Su-jian, ZHAO Fang-geng, et al. An ant colony optimization algorithm for the multiple travelling salesmen problem [ C ]//Proc of the 4th IEEE Conference on Industrial Electronics and Applications. 2009 : 1533-1537.
  • 7MASUTYI T A S, De CASTRO L N. A clustering approach based on artificial neural networks to solve routing problems [ C ]//Proc of the l I th IEEE International Conference on Computational Science and Engineering. Washington DC : IEEE Computer Society, 2008 : 285- 292.
  • 8NALLUSAMY R, DURAISWAMY K, DHANALAKSMI R, et al.Optimization of non-linear multiple travelling salesman problem using K-means clustering, shrink wrap algorithm and meta-heuristics[ J]. International Journal of Nonlinear Science,2009,8(4) :480-487.
  • 9NALLUSAMY R, DURAISWAMY K, DHANALAKSMI R, et al. Optimization of multiple vehicle routing problems using approximation algorithms[ J]. International Journal of Engineering Science and Technology ,2009,1 ( 3 ) : 129-135.
  • 10WANG Dong, WU Xiang-bin, MAO Xian-cheng, et al. Reducing initial edge set of traveling salesmen problems [ C ]//Proc of Intemational Conference on Machine Learning and Cybernetics. 2007:2333- 2338.

共引文献92

同被引文献60

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部