期刊文献+

Standard Embeddings of Smooth Schubert Varieties in Rational Homogeneous Manifolds of Picard Number 1

Standard Embeddings of Smooth Schubert Varieties in Rational Homogeneous Manifolds of Picard Number 1
原文传递
导出
摘要 Smooth Schubert varieties in rational homogeneous manifolds of Picard number 1 are horospherical varieties. We characterize standard embeddings of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1 by means of varieties of minimal rational tangents. In particular, we mainly consider nonhomogeneous smooth Schubert varieties in symplectic Grassmannians and in the 20-dimensional F_4- homogeneous manifold associated to a short simple root. Smooth Schubert varieties in rational homogeneous manifolds of Picard number 1 are horospherical varieties. We characterize standard embeddings of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1 by means of varieties of minimal rational tangents. In particular, we mainly consider nonhomogeneous smooth Schubert varieties in symplectic Grassmannians and in the 20-dimensional F_4- homogeneous manifold associated to a short simple root.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第3期466-487,共22页 数学学报(英文版)
基金 supported by the National Researcher Program 2010-0020413 of NRF GA17-19437S of Czech Science Foundation(GACR) partially supported by the Simons-Foundation grant 346300 the Polish Government MNi SW 2015-2019 matching fund supported by BK21 PLUS SNU Mathematical Sciences Division IBS-R003-Y1
关键词 Smooth Schubert varieties rational homogeneous manifolds variety of minimal rational tangents standard embeddings Cartan-Fubini extension Smooth Schubert varieties, rational homogeneous manifolds, variety of minimal rational tangents, standard embeddings, Cartan-Fubini extension
分类号 O [理学]
  • 相关文献

二级参考文献32

  • 1Insong Choe,Jaehyun Hong.Integral varieties of the canonical cone structure on G/P[J]. Mathematische Annalen . 2004 (4)
  • 2Zhen-Han Tu.Rigidity of proper holomorphic mappings between nonequidimensional bounded symmetric domains[J]. Mathematische Zeitschrift . 2002 (1)
  • 3Jun-Muk Hwang,Ngaiming Mok.Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds[J]. Inventiones mathematicae . 1999 (1)
  • 4Jun-Muk Hwang,Ngaiming Mok.Rigidity of irreducible Hermitian symmetric spaces of the compact type under K?hler deformation[J]. Inventiones mathematicae . 1998 (2)
  • 5D. N. Akhiezer,S. G. Gindikin.On Stein extensions of real symmetric spaces[J]. Mathematische Annalen . 1990 (1-3)
  • 6Lawrence Ein.The ramification divisors for branched coverings ofP k n[J]. Mathematische Annalen . 1982 (4)
  • 7Hwang J M,Mok N.Holomorphic maps from rational homogeneous spaces of Picard number 1 onto pro- jective manifolds. Inventiones Mathematicae . 1999
  • 8Mok N.Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathe- matics . 1989
  • 9Tsai I H.Rigidity of proper holomorphic maps between symmetric domains. Journal of Differential Geometry . 1993
  • 10Ochiai T.Geometry associated with semisimple fiat homogeneous spaces. Transactions of the American Mathematical Society . 1970

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部