摘要
孤立子在非线性的流体力学、等离子物理学、光学、生物学等领域有广泛的应用.将(2+1)维常系数CDGKS方程扩展为(2+1)维变系数CDGKS方程,利用双线性方法求出了该方程的BScklund变换,进一步求出变系数CDGKS方程及其修正变系数CDGKS方程的Gramm-typePfaffian解,从而解决了变系数孤立子方程的精确解.
Soliton has been widely used in the fields of fluid mechanics, plasma physics, nonlinear optics, biology and so on. Simultaneously, it is always an important part of the soliton theory to find the exact solutions of soliton equations, especially the soliton equations with variable coefficients. This paper extends the CDGKS equation with variable coefficients were calculated using the bilinear method, firstly by BScklund transformation of the equation, and then calculate the vari-able coefficient CDGKS equation and modified CDGKS equation with variable coefficients Gramm-type pfaffian solutions. The method is simple and easy to operate, and has a certain guiding signific- ance to the reality.
出处
《数学的实践与认识》
北大核心
2018年第4期305-310,共6页
Mathematics in Practice and Theory
基金
河南省高等学校重点科研项目(15A110027,16A413010,17A110032)
河南省科技攻关项目(162102310438)