期刊文献+

基于KPCA与KFDA的SAR图像舰船目标识别 被引量:5

Ship targets recognition in SAR images based on KPCA and KFDA
下载PDF
导出
摘要 针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法。用核主成分分析的方法对实测的SAR舰船目标数据进行特征降维,再结合核Fisher判别分析法对降维后的样本数据进行多类别分类。将该方法用于对实测的四类舰船目标进行识别,平均识别率可达91.25%。实验结果表明,核主成分分析与核Fisher判别分析相结合的方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率。 Ship targets recognition algorithm combining Kernel Principal Component Analysis(KPCA) and Kernel Fisher Discriminate Analysis(KFDA) was proposed to deal with the problem of ship targets recognition in SAR images.Firstly, KPCA algorithm was used to transform the sample data of high dimension space to low dimension space to reduce the dimension. Then, the processed samples were recognized according to KFDA algorithm. The method is applied for recognizing fourth-class ship targets and the average recognition arrives at 91.25%. The result showed that the combination of KPCA and KFDA can effectively eliminate the interaction between sample variable indicators. It is an effective method for SAR images feature extraction and target recognition.
出处 《舰船科学技术》 北大核心 2017年第7期149-152,共4页 Ship Science and Technology
基金 国家自然科学基金资助项目(61179016)
关键词 SAR图像 目标识别 特征提取 核主成分分析 核FISHER判别分析 SAR images ship targets recognition features extraction kernel principal component analysis(KPCA) kernel fisher discriminate analysis(KFDA)
  • 相关文献

参考文献3

二级参考文献20

  • 1高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值提取及峰值稳定性分析[J].电子与信息学报,2005,27(4):561-565. 被引量:7
  • 2高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值特征提取[J].信号处理,2005,21(3):232-235. 被引量:1
  • 3MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets for vessel classification studies [J]. IEEE Trans Geosci Remote Sensing, 2006, 4412: 3517-3526.
  • 4MARGARIT G, FABREGAS X, MALLORQUI J J. Study of the vessel speed and sea swell effects on simulated polarimetric high resolution SAR images [G]//STEIN T I. Proceedings of IGARSS2004. US IEEE 2004 International Geoscience and Remote Sensing Symposium. 2004: 603-606.
  • 5BACHMANN C M, MUSMAN S A, SCHULTZ A. Lateral inhibition neural networks for classification of simulated radar imagery[G]// IEEE International Conference on Neural Networks. Baltimore: Lucas S M, 1992:115-120.
  • 6OSMAN H, BLOSTEIN S, GAGNON L. Classification of ships in airborne sar imagery using back propagation neural networks [J]. SPIE Proc, 1997, 3161:126-136.
  • 7ASKARI F, ZERR B. Automatic approach to ship detection in spaceborne synthetic aperture radar imagery: an assessment of ship detection capability using RADARSAT[R]. Technical Report SACLANTCEN-SR-338. La Spezia, Italy: SACLANT Undersea Research Centre, ,2000.36.
  • 8王隽,杨劲松,黄韦艮,等.基于极化SAR目标分解理论的船只几何结构初步分析[G]//第二届微波遥感技术研讨会.北京:中国空间科学学会,2006:152-160.
  • 9张晰.星载SAR舰船目标探测实验研究[M].青岛:中国海洋大学,2008.
  • 10ZHANG Xi, ZHANG Jie, JI Yong-gang. Comparison and evaluation of ship target detection algorithms with SAR images. European Space Agency, (Special Publication) ESA SP, n 656 SP[G]//Proceedings of SeaSAR 2008. Rome:ESA. 2008: 4.

共引文献75

同被引文献39

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部