摘要
针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法。用核主成分分析的方法对实测的SAR舰船目标数据进行特征降维,再结合核Fisher判别分析法对降维后的样本数据进行多类别分类。将该方法用于对实测的四类舰船目标进行识别,平均识别率可达91.25%。实验结果表明,核主成分分析与核Fisher判别分析相结合的方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率。
Ship targets recognition algorithm combining Kernel Principal Component Analysis(KPCA) and Kernel Fisher Discriminate Analysis(KFDA) was proposed to deal with the problem of ship targets recognition in SAR images.Firstly, KPCA algorithm was used to transform the sample data of high dimension space to low dimension space to reduce the dimension. Then, the processed samples were recognized according to KFDA algorithm. The method is applied for recognizing fourth-class ship targets and the average recognition arrives at 91.25%. The result showed that the combination of KPCA and KFDA can effectively eliminate the interaction between sample variable indicators. It is an effective method for SAR images feature extraction and target recognition.
出处
《舰船科学技术》
北大核心
2017年第7期149-152,共4页
Ship Science and Technology
基金
国家自然科学基金资助项目(61179016)
关键词
SAR图像
目标识别
特征提取
核主成分分析
核FISHER判别分析
SAR images
ship targets recognition
features extraction
kernel principal component analysis(KPCA)
kernel fisher discriminate analysis(KFDA)