期刊文献+

高阶扰动引力对自由段弹道影响的快速计算方法

Fast calculation method for the influence of high-order disturbing gravity on free flight trajectory
原文传递
导出
摘要 针对扰动引力大小和方向随空间位置变化的特点,将自由段弹道按射程进行分段,动态建立北天东坐标系并计算高阶扰动引力加速度,将其天向分量等价为均质圆球质量偏差,并修正标准椭圆轨道方程;将扰动引力对北向和东向的影响近似为匀加速直线运动,推导出运动微分方程的解并在地心坐标系内对弹道飞行器的位置和绝对速度进行更新计算,从而提出了高阶扰动引力对自由段弹道影响的近似解析解计算方法。数值计算结果表明,该方法具有较高的计算精度,可用于弹道飞行器高精度实时制导和轨道预测等方面。 Considering the variety of the disturbing gravity with the dimensional position of the ballistic vehicle,this research divides the free flight trajectory into several stages by the flight range. Furthermore,the dynamic North-Air-East coordinate system was established and the high-order disturbing gravity was calculated. Next,the equation of normal elliptical orbit was modified by mass deviation of the Earth which caused by the upward disturbing gravity acceleration,the influence of the north and east disturbing gravity were considered as rectilinear motion with constant acceleration. Then,the solutions of the differential equations of motion were deduced,and the parameters of the position and velocity were updated in the geocentric coordinate system. Finally,the simulation results show that the analytical solution has a higher computational accuracy,and has an important application prospect in the precision real-time guidance and orbit forecast.
作者 常晓华 丰海
出处 《飞行力学》 CSCD 北大核心 2018年第1期56-60,共5页 Flight Dynamics
关键词 扰动引力 自由段弹道 解析解 disturbing gravity free flight trajectory analytical solution
  • 相关文献

参考文献8

二级参考文献20

  • 1王继平,王明海,张志辉.扰动引力的神经网络逼近算法[J].宇航学报,2008,29(1):385-390. 被引量:7
  • 2祁立学,张萍,杨玲.地心直角坐标到大地坐标常用转换算法的分析与比较[J].战术导弹技术,2006(2):37-41. 被引量:20
  • 3郑伟,汤国建.弹道导弹自由段解算的等高约束解析解[J].宇航学报,2007,28(2):269-272. 被引量:14
  • 4[3]Martin T,Hagnn,Howard B,Demuth,Mark H,Beale.Neural Net-work Design[M].Beijing:China Machine Press,2002,9:197-257.
  • 5[4]Battiti R.First and second-order methods for learning:Between steep-est descent and Newton's method[J].Neural Computation,1992,4(2):141-166.
  • 6[5]Hagan M T and Menhej M.Training feedforward network with the Mar-quardt algorithm[J].IEEE Tansactions on Neural Networks,1994,5(6).
  • 7郑伟,汤国建.扰动引力场中弹道导弹飞行力学[M].北京:国防工业出版社,2009:56-61.
  • 8National Geospatial-intelligence Agency. EGM2008 Model Co-efficients-Original Release [DB/OL]. 2008 [2010-10-13]. http://earth-info. nga. mil/GandG/wgs84/gravitymod/egm.
  • 9朱龙根,1989年
  • 10任萱,1987年

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部