期刊文献+

基于离散粒子群优化的无人机协同多任务分配 被引量:23

UAV Cooperative Multi-task Assignment Based on Discrete Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 多无人机执行广域搜索攻击任务下的协同多任务优化分配需要满足多类复杂约束。在通用无人机协同多任务分配模型的基础上,综合考虑了包括任务时间约束和无人机弹药消耗等多类复杂约束条件,提出了一种基于离散粒子群算法的多无人机协同多任务分配方法。根据协同多任务分配问题的特点,将多任务分配的任务时序约束和多机协同约束融入到算法的粒子矩阵编码中,将无人机弹药约束和任务时间约束融入到粒子更新的过程中,设计了符合实际问题离散域特点的粒子位置和速度更新的交叉策略和变异策略。仿真结果表明,上述算法能在满足多类复杂约束的条件下有效地解决无人机作战目标协同多任务优化分配问题。 To solve the problem of cooperative multi -task assignment (CMTAP) for unmanned aerial vehicle (UAV) under wide area search and attack mission, a discrete particle swarm optimization algorithm (DPSO) is pro- posed in the paper. The algorithm not only considers task precedence, coordination and time constraints, but also holds the view of the dynamic task execution time window constraints and the limited weapons of each UAV that de- plete with use. According to the characteristics and constraints of CMATP, particles were coded as a matrix to satisfy the constraints of task precedence and coordination. The cross and mutation strategies for the position and speed up- dating of particles were applied to make the DPSO algorithm more suitable for solving this discrete area problem. Strategies of self - organization inertia weight and acceleration coefficient were introduced to make full use of the glob- al search capability and effectively overcome the PSO disadvantages of slow convergence and easy to fall into local op- timum. Simulation results demonstrate the feasibility and efficiency of the proposed DPSO algorithm.
出处 《计算机仿真》 北大核心 2018年第2期22-28,共7页 Computer Simulation
关键词 无人飞行器 多任务分配 组合优化 离散粒子群 广域搜索攻击 Unmanned aerial vehicle(UAV) Multi -task assignment Combinatorial optimization Discrete particle swarm Wide area search and attack
  • 相关文献

参考文献6

二级参考文献135

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004,24(5):140-143. 被引量:25
  • 3赵红,何华灿,赵宗涛,虞蕾.一种地形分析方法在航迹规划中的应用[J].空军工程大学学报(自然科学版),2006,7(4):36-38. 被引量:3
  • 4潘全科,王文宏,朱剑英.解决无等待流水车间调度问题的离散粒子群优化算法[J].计算机集成制造系统,2007,13(6):1127-1130. 被引量:18
  • 5高国华.大范围多路径规划问题研究[D].长沙:国防科技大学,1999.
  • 6叶媛嫒.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学,2005.
  • 7Rasmussen S, Chandler P R, Mitchell J W, et al. Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles[C]//AIAA Guidance, Navigation, and Control Conference, 2003 : 679 - 708.
  • 8Curz J B, Jr C, Chen G. Particle swarm optimization for resource allocation in UAV cooperative control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004:16 - 19.
  • 9Fan Chunxia, Wan Youhong. An adaptive simple particle swarm optimization algorithm[C]//Control and Decision Conference, 2008 : 3067 - 3072.
  • 10Pan Q K,Tasgetiren M F,Liang Y C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem with makespan criterion[C]// Proc. of the Int Workshop on UK Planning and Scheduling Special Interest Group, 2005:31 -41.

共引文献261

同被引文献261

引证文献23

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部