期刊文献+

一种鲁棒的基于集成学习的核相关红外目标跟踪算法 被引量:5

A Robust Kernelized Correlation Tracking Algorithm for Infrared Targets Based on Ensemble Learning
下载PDF
导出
摘要 在红外目标跟踪中,由于目标所处的背景信息复杂多变和目标外观的显著变化,单一的分类器不足以拟合多模态的数据。该文结合核相关滤波器(KCF)将多个核相关分类器通过集成学习整合到一个框架中。利用KCF分类器具有解析解的特点平衡跟踪鲁棒性与实时性之间的矛盾,从而解决单个分类器无法处理复杂背景与显著的外观变化问题,并显著提升目标跟踪的性能与稳定性。为了验证算法的有效性,该文利用两个核相关跟踪器联合学习出1个强分类器。大量的定性定量实验表明所提的算法的跟踪性能超过传统的KCF算法,且跟踪速度也超过大多数比较算法。 In the infrared object tracking, the single classifier is not enough to fit the multimodal data due to the complex background information of the target and the significant change in the appearance. In this paper, Kernelized Correlation Filters(KCF) tracking algorithm is used to integrate kernelized correlation classifiers into one framework through ensemble learning. It uses the KCF classifier that has analytical solutions to balance the contradiction between the robustness and instantaneity, thereby addressing the complex background and significant appearance changes, and consequently significantly improving the tracking performance and stability. To verify the effectiveness of the algorithm, this paper uses two kernelized correlation trackers to learn a strong classifier. The qualitative and quantitative experiments show that the proposed algorithm outperforms the traditional KCF algorithm, and the tracking speed is superior to most of the comparison algorithms.
作者 谢涛 吴恩斯
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第3期602-609,共8页 Journal of Electronics & Information Technology
基金 教育部-中国移动科研基金(MCM20160405)~~
关键词 目标跟踪 集成学习 判别式分类器 核相关跟踪 Object tracking Ensemble learning Discriminant classifier Kernelized correlation tracking
  • 相关文献

参考文献7

二级参考文献81

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4Yilmaz A, Javed O, and Shah M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4): 1-29.
  • 5Saffari A, Godec M, Pock T, et al: Online multi-class LPBoost[C]. Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 3570-3577.
  • 6Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 7Zhang Kai-hua, Zhang Lei, and Yang M H. Real-time compressive tracking[C]. Preceedings of the European Conference on Computer Vision, Florence, Italy, 2012, 3: 864-877.
  • 8Mei Xue and Ling Hai-bin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259 2272.
  • 9Kalal Z, Mikolajczyk K, and Matas J. Face-TLD: tracking- learning-detection applied to faces[C]. Preceedings of the IEEE International Conference on Image Processing, Hong Kong, China, 2010: 3789-3792.
  • 10Cheng Ming-ming, Zhang Zi-ming, Lin Wen-yan, et al: BING binarized normed gradients for objectness.estimation at300fps[OL]. http://mmcheng.net/bing/, 2014.

共引文献28

同被引文献40

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部