期刊文献+

Protonation induced high-T_c phases in iron-based superconductors evidenced by NMR and magnetization measurements 被引量:7

Protonation induced high-T_c phases in iron-based superconductors evidenced by NMR and magnetization measurements
原文传递
导出
摘要 Chemical substitution during growth is a well-established method to manipulate electronic states of quantum materials, and leads to rich spectra of phase diagrams in cuprate and iron-based superconductors. Here we report a novel and generic strategy to achieve nonvolatile electron doping in series of(i.e.11 and 122 structures) Fe-based superconductors by ionic liquid gating induced protonation at room temperature. Accumulation of protons in bulk compounds induces superconductivity in the parent compounds, and enhances the Tclargely in some superconducting ones. Furthermore, the existence of proton in the lattice enables the first proton nuclear magnetic resonance(NMR) study to probe directly superconductivity. Using Fe S as a model system, our NMR study reveals an emergent high-Tcphase with no coherence peak which is hard to measure by NMR with other isotopes. This novel electric-fieldinduced proton evolution opens up an avenue for manipulation of competing electronic states(e.g.Mott insulators), and may provide an innovative way for a broad perspective of NMR measurements with greatly enhanced detecting resolution. Chemical substitution during growth is a well-established method to manipulate electronic states of quantum materials, and leads to rich spectra of phase diagrams in cuprate and iron-based superconductors. Here we report a novel and generic strategy to achieve nonvolatile electron doping in series of(i.e.11 and 122 structures) Fe-based superconductors by ionic liquid gating induced protonation at room temperature. Accumulation of protons in bulk compounds induces superconductivity in the parent compounds, and enhances the Tclargely in some superconducting ones. Furthermore, the existence of proton in the lattice enables the first proton nuclear magnetic resonance(NMR) study to probe directly superconductivity. Using Fe S as a model system, our NMR study reveals an emergent high-Tcphase with no coherence peak which is hard to measure by NMR with other isotopes. This novel electric-fieldinduced proton evolution opens up an avenue for manipulation of competing electronic states(e.g.Mott insulators), and may provide an innovative way for a broad perspective of NMR measurements with greatly enhanced detecting resolution.
出处 《Science Bulletin》 SCIE EI CSCD 2018年第1期11-16,共6页 科学通报(英文版)
基金 supported by the Ministry of Science and Technology of China(2015CB921700,2016YFA0300504,2016YFA0301004,2016YFA0300401 and 2017YFA0302903) the National Natural Science Foundation of China(11374364,11522429,11374011 and 11534005)
关键词 Ion liquid gating PROTONATION NMR Iron-based superconductors NMR 超导体 磁化 电子状态 房间温度 模型系统 创新方法
  • 相关文献

参考文献2

二级参考文献2

共引文献4

同被引文献29

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部