期刊文献+

社交网络敏感数据获取方法研究 被引量:1

A Method of Social Network Sensitive Data Acquisition and Implementation
下载PDF
导出
摘要 随着大数据时代的到来,数据变得至关重要,但是数据获取一直是数据挖掘的一个难题。社交网络的成熟使得数据获取变得便捷,但是获取方法仍然有待研究。通过分析社交网络中的信息存储状况,构造了社交网络敏感数据获取模型。从获取用户的个人简介信息中得到用户性别、出生日期、所在地等信息,并通过浏览记录对用户兴趣进行分析,最后利用好友列表获取其整个社交网中用户的敏感数据。以新浪微博为例研究了用户敏感数据获取率。实验发现,在所有数据获取中职业获取率是最低的,而其它信息获取率较高。 With the advent of the age of big data, the data becomes critical. But accessing to data has been a problem for data mining. Social network of mature makes get data convenient, but the method still to be researched. The paper constructed so- cial network sensitive data acquisition model by the analysis of social network in information storage condition. In the user's per- sonal profile, we get some information such as user gender, date of birth, location, etc. , and analyse user interest through the browsing record. Finally we get the entire users sensitive data of social network by the list of friends. By python, the paper make web crawler algorithm get network sensitive data. In the case of sina weibo , we get users' sensitive data. In the experi- ment, we found that the acquisition rate of careers was the lowest, while the other information acquisition rate was higher.
作者 张章学
出处 《软件导刊》 2018年第3期56-58,共3页 Software Guide
基金 福建省属公益类科研院所基本科研项目(2015R1008-5)
关键词 社交网络 敏感数据 网络爬虫 social network sensitive data web spider
  • 相关文献

参考文献6

二级参考文献57

  • 1林海霞,原福永,陈金森.主题网络蜘蛛搜索策略贪婪性解决方法[J].微电子学与计算机,2006,23(z1):278-280. 被引量:4
  • 2何昕,谢志鹏.基于简单树匹配算法的Web页面结构相似性度量[J].计算机研究与发展,2007,44(z3):1-6. 被引量:15
  • 3崔杰,李陶深,兰红星.基于Hadoop的海量数据存储平台设计与开发[J].计算机研究与发展,2012,49(S1):12-18. 被引量:141
  • 4周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:156
  • 5[16]Hobbs J,Appelt D,Bear J et al.FASTUS:A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text[C].In:Roche,Schabes eds. Finite State Devices for Natural Language Processing, MIT Press,Cambridge MA, 1996
  • 6[17]Appelt D E.Introduction to Information Extraction[J].AI COMMUNICATIONS, 1999; 12(3)
  • 7[18]Yangarber R.Scenario Customization for Information Extraction[D].Ph D Thesis.New York University,2001-01
  • 8[19]Cowie J, Lehnert W.Information Extraction[J].Communications of the ACM, 1996;39(1)
  • 9[20]Grishman R Adaptive information extraction and sublangu age analysis[C].In:Proceedings of IJCAI-2001 Workshop on Adaptive Text Extraction and Mining,2001
  • 10[1]Applet D E,Israel D J.Introduction to Information Extraction Technology. A Tutorial for IJCAI-99,1999

共引文献210

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部