期刊文献+

基于内容的不良信息文本实时识别方法研究

原文传递
导出
摘要 本文对信息过滤中的关键技术不良信息识别方法进行了研究,提出了一个基于内容的不良信息过滤模型,并结合现有的分类方法,给出了几种适用于不良信息文本实时识别的方法,对各算法用于不良信息识别的原理进行了描述.
作者 李艳玲
出处 《计算机与信息技术》 2007年第5期30-32,共3页 Computer & Information Technology
  • 相关文献

参考文献7

二级参考文献45

  • 1黄昌宁 等.对自动分词的反思[A]..语言计算与基于内容的文本处理[C].北京:清华大学出版社,2003,7.26-38.
  • 2黄萱菁 吴立德.独立于语种的文本分类方法[C]..2000International Conference on Multilingual Information Processing[C].,2000..
  • 3David D Lewis.Feature Selection and Feature Extraction for Text Categorization[C].Proceedings of Speech and Natural Language Workshop.Morgan Kaufmann:Defense Advanced Research Projects Agency,1992.212-217.
  • 4D D Lewis.Naive (Bayes) at Forty:The Independence Assumption in Information Retrieval[C].Chemnitz:Machine Learning:ECML-98,10th European Conference on Machine Learning,1998.4-15.
  • 5Dunja Mladenic.Feature Subset Selection in Text-Learning[C]. Chemnitz,Germany:European Conference on Machine Learning,1998.95-100.
  • 6Aidan Finn, Nicholas Kushmerick,et al.Classification and Domain Transfer for Information Fltering[C].Glasgow:Proc. of the European Colloquium on Information Retrieval Research,2002.353-362.
  • 7B Pang,L Lee,S Vaithyanathan.Thumbs up? Sentiment Classification using Machine Learning Techniques[C].Philadelphia:Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP),2002.79-86.
  • 8B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule Mining [C]. KDD - 98, New York,1998.
  • 9Wenmin Li, Jiawei Han, JianPei. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules [C] .ICDM2001, Silicon Valley, Ca, Nov 2001:369- 376.
  • 10Maria-Luiza Antonie, Osmar R. Zaiane. Text Document Categorization by Term Association [C]. In: Proc of the IEEE International Conference on Data Mining (ICDM 2002), Maebashi City, Japan: 19 - 26.

共引文献332

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部