期刊文献+

一类完全三阶常微分方程边值问题的正解 被引量:3

Positive Solutions for a Class of Fully Third-Order Ordinary Differential Equation Boundary Value Problem
下载PDF
导出
摘要 用锥上的不动点指数理论与导数估计技巧,研究完全三阶边值问题{-u′′′(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1],u(0)=u′(0)=u″(1)=0正解的存在性,其中f:[0,1]×R_+~3→R_+连续.在f(t,x,y,z)满足|(x,y,z)|充分小或充分大时的一些不等式条件下,得到该方程正解的存在性结果,这些不等式条件允许f(t,x,y,z)关于x,y,z超线性或次线性增长. By using the fixed point index theory in cones and derivative estimates technique,we studied the existence of positive solutions for the fully third-order boundary value problem {-u′′′(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1],u(0)=u′(0)=u″(1)=0 where f:[0,1]×R_+~3→R_+ was continuous.The existence results of positive solutions were obtained under the condition that f(t,x,y,z)satisfied some inequalities when|(x,y,z)| was small or large enough.These inequality conditions allowed that f(t,x,y,z)was superlinear or sublinear growth on x,y,z.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第2期208-214,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11661071 11261053)
关键词 完全三阶边值问题 正解 不动点指数 fully third-order boundary value problem positive solution cone fixed point index
  • 相关文献

参考文献4

二级参考文献22

  • 1王俊禹,郑大伟.具有间断非线性的微分方程之正解的存在性[J].吉林大学自然科学学报,1996(1):17-20. 被引量:2
  • 2蒋达清.三阶非线性微分方程正解的存在性[J].东北师大学报(自然科学版),1996,28(4):6-10. 被引量:36
  • 3[1]Gupta C P, Lakshmnikantham V. Existence and uniqueness theorems fora third-order three points boundary value problems[J]. Nonl Anal, 1991, 16: 949
  • 4[2]Troy W C. Solution of third order differential equations relevant to draining and coating flows[J]. SIAM J Math Anal, 1993, 24:155
  • 5[3]Bernis F, Peleter I A. Two problems from draining flows involving third-order ordinary differential equation[J]. SIAM J Math Anal, 1996, 27.515
  • 6[5]Ma Ruyun. Multiplicity results for a third order boundary value problem at resonance[J]. Nonal Anal,1998, 32..493
  • 7BERMOS F,PELEGIES L A.Two problems from draining flows involving third-order ordinary differential equations[J] ,SIAM J Math Anal,1996,27:515-527.
  • 8CABADA A,LOIS S.Existence of solution for discontinuous third order boundary value problems[J].J Comput & Appl Math,1999,110:105-114.
  • 9FENG Y,LIU S.Solvability of a third-order two-point boundary value problem[J].Appl Math Letters,2005,18:1034-1040.
  • 10LI S.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].J Math Anal Appl,2006,323:413-425.

共引文献79

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部