摘要
用锥上的不动点指数理论与导数估计技巧,研究完全三阶边值问题{-u′′′(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1],u(0)=u′(0)=u″(1)=0正解的存在性,其中f:[0,1]×R_+~3→R_+连续.在f(t,x,y,z)满足|(x,y,z)|充分小或充分大时的一些不等式条件下,得到该方程正解的存在性结果,这些不等式条件允许f(t,x,y,z)关于x,y,z超线性或次线性增长.
By using the fixed point index theory in cones and derivative estimates technique,we studied the existence of positive solutions for the fully third-order boundary value problem {-u′′′(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1],u(0)=u′(0)=u″(1)=0 where f:[0,1]×R_+~3→R_+ was continuous.The existence results of positive solutions were obtained under the condition that f(t,x,y,z)satisfied some inequalities when|(x,y,z)| was small or large enough.These inequality conditions allowed that f(t,x,y,z)was superlinear or sublinear growth on x,y,z.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2018年第2期208-214,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11661071
11261053)
关键词
完全三阶边值问题
正解
锥
不动点指数
fully third-order boundary value problem
positive solution
cone
fixed point index