期刊文献+

低电压下多孔阳极氧化铝膜的制备

Preparation of Porous Anodic Aluminum Oxide Film Under Low Voltage
原文传递
导出
摘要 选取草酸溶液电解液,采用低压恒压法与二次阳极氧化工艺制备了多孔阳极氧化铝膜(AAO)。借助扫描电镜(SEM),观察了电解液浓度和氧化时间对多孔阳极氧化铝膜的形貌、孔径和孔间距的影响,得到电流随时间的变化曲线。研究了多孔阳极氧化铝膜层厚度与电流密度及氧化时间之间的关系,探讨了多孔阳极氧化铝膜形成机理,优化了阳极氧化制备工艺。结果表明:利用低压恒压法,在氧化电压18 V,氧化时间12 h,氧化液浓度0.6 mol/L时,可制备孔径均匀、高度有序的多孔阳极氧化铝膜。 Taking oxalic acid electrolyte, porous anodic aluminum oxide(AAO) films were prepared by low-voltage constant voltage and two-step anodization process. By scanning electron microscope, the effecs of electrolyte concentration and oxidation time on the morphology, pore size and hole spacing of porous anodic aluminum oxidation films were studied.The electric current changing with time curve was obtained. The relationship among the thickness of AAO, electric current density and oxidation time was investigated. The forming mechanism of AAO film was discussed as well as the AAO process was optimized. The results show that the AAO film with uniform and high ordered pore size can be manufactured by low-voltage constant voltage process under the oxidation voltage of 18 V, oxidation time of 12 h, and the concentration of oxidation liquid of 0.6 mol/L.
出处 《热加工工艺》 CSCD 北大核心 2018年第2期188-190,194,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(51174139)
关键词 低压恒压 高度有序 阳极氧化铝 low-voltage constant voltage highly ordered anodic aluminum oxide
  • 相关文献

参考文献6

二级参考文献234

  • 1Abbaslou R M M, Tavasoli A, Dalai A K. Effect of pre-treatment on physico-chemical properites and stability of carbon nanotubes supported iron fischer-tropsch catalysts. Appl Catal A-Gen, 2009, 335: 33-41.
  • 2Tavasoli A, Abbaslou R M M, Trepanier M, et al. Fischer-tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Appl Catal A-Gen, 2008, 345:134-142.
  • 3Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J Am Chem Soc, 2007, 129:7421-7426.
  • 4Zhang H B, Pan X L, Liu J Y, et al. Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes. ChemSusChem, 2011, 4:975-980.
  • 5Bahome M C, Jewell L L, Padayachy K D, et al. Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in fischer-Tropsch synthesis. Appl Catal A-Gen, 2007, 328:243-251.
  • 6Ma W, Kugler E L, Wright J, et al. Mo-Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer-Tropsch process: Effect of Mo addition on reducibility, activity, and hydrocarbon selectivity. Energy Fuels, 2006, 20:2299-2307.
  • 7Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A-Gen, 2003, 253:337-358.
  • 8Meng C Z, Liu C H, Chen L Z, et al. Highly flexible and all-solid- state paper like polymer supercapacitors. Nano Lett, 2010, 10: 4205- 4031.
  • 9Izadi-Najafabadi A, Yasuda S, Kobashi K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater, 2010, 22:E235-E241.
  • 10Serp P, Castillejos E. Catalysis in carbon nanotubes. ChemCatChem, 2010, 2:41-47.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部