期刊文献+

以MRPs为壁材的β-胡萝卜素微胶囊化及其产品特性 被引量:3

The Microencapsulation of β-carotene as Wall Material of MRPs and the Characteristic of the Products
原文传递
导出
摘要 以WPI(乳清蛋白)和半乳糖的美拉德反应产物(MRPs)为壁材,采用喷雾干燥法制备β-胡萝卜素微胶囊,并以微胶囊囊化效率为指标,通过单因素试验设计优化β-胡萝卜素微胶囊的最佳工艺参数。研究表明,壁材为WPI-半乳糖的MRPs,芯材为β-胡萝卜素,芯壁比为0.15,乳化剂(即单甘酯与吐温80)的添加量为3%,其中单甘酯与吐温80的质量比为2∶8,在高速分散速度15 000 r/min,分散时间12 min,干燥进风温度185℃的条件下,获得具有最高囊化效率的β-胡萝卜素微胶囊。采用红外光谱分析定性验证β-胡萝卜素包埋物,通过扫描电镜(SEM)激光粒度分析以及热重分析(TGA)证实以WPI-半乳糖的MRPs为壁材的β-胡萝卜素微胶囊具有较好的表面结构,较小的粒径及优良的热稳定性。 The maillard reaction products(MRPs) of WPI(whey protein) and galactose were used as wall materials to prepare β-carotene microcapsules by spray drying. Taking encapsulation efficiency as the index, the single factor experiment was designed to optimize the process parameters of β-carotene microcapsule. The results showed that the maximum content of microcapsules was obtained in the following conditions. WPI-galactose MRPs were wall materials. Core material was β-carotene. The ratio of core material to wall material was 0.15. The total amount of emulsifier was 3%.The proportion of monostearin and twain-80 was 2 ∶ 8. The high speed dispersion speed was 15 000 r/min. The high speed dispersion time was 12 min and the drying temperature was 185 ℃. The formation of beta carotene was qualitatively verified by infrared spectrum analysis. By means of scanning electron microscopy, laser particle size analysis and thermogravimetric analysis, it was confirmed that the β-carotene microcapsules with MRPs as wall material had better surface structure, smaller particle size and better thermal stability.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2018年第2期93-101,共9页 Journal of Chinese Institute Of Food Science and Technology
基金 黑龙江省自然科学基金项目(C2017029)
关键词 美拉德反应产物(MRPs) Β-胡萝卜素 微胶囊工艺 特性 Maillard reaction products β-carotene microcapsule process properties
  • 相关文献

参考文献3

二级参考文献19

  • 1冯光炷,卢奎,李和平.紫外-可见光谱研究β-环糊精与β-胡萝卜素的包结作用[J].光谱学与光谱分析,2004,24(9):1099-1102. 被引量:25
  • 2王业勤 李勤生.天然类胡萝卜素[M].北京:中国医药科技出版社,1997..
  • 3Ghanbarzadeh B, Oromiehi A R. Biodegradable biocom-posite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis [J]. International Journal of Biological Macromolecules,2008,43:209-215.
  • 4Mate J I, Krochta J M. Whey protein and acetylated monoglyceride edible coatings: effect on the rancidity process of walnuts[J]. Journal of Agricultural and Food Chemistry,1997, 45:2509-2513.
  • 5Brindle L P, Krochta J M. Physical properties of whey protein-hydroxypropylmethylcellulose blend edible films [J]. Journal of Food Science,2008,73(9):446-454.
  • 6Gounga M E, Xu S Y, Wang Z, et al. Effect of whey protein isolate-pullulan edible coatings on the quality and shelf life of freshly roasted and freeze-dried Chinese chestnut-J-. Journal of Food Science,2008,73(4):155161.
  • 7Oses J, Fabregat-Vazquez M, Pedroza-Islas R, et al. Development and characterization of composite edible films based on whey protein isolate and mesquite gum[J]. Journal of Food Engineering,2009,92(1):56-62.
  • 8He J S, Azuma N, Hagiwara T, et al. Effects of sugars on the cross-linking formation and phase separation of high- pressure induced gel of whey protein from bovine milk[J]. Bioscience, Biotechnology, and Biochemstry,2006,70 (3): 615 -625.
  • 9Penas E, Prestamo G, Baeza L M, et al. Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins[J]. International Dairy Journal,2006,16:831-839.
  • 10匿名著者,CN1062744

共引文献65

同被引文献44

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部