期刊文献+

量子k-means算法 被引量:6

Quantum k-means algorithm
下载PDF
导出
摘要 为提高经典k-means算法的计算效率,引入量子计算理论得到量子k-means算法。先将聚类数据和k个聚类中心制备成量子态,并行计算其相似度,接着利用相位估计算法将相似度信息保存到量子比特中,然后利用最小值查找量子算法查找最相似的聚类中心点。对比两种算法的复杂度可知,在一定条件下,相对经典算法而言,量子k-means算法的时间复杂度降低,空间复杂度得到指数级降低。 In this paper a quantum k-means algorithm is proposed by integrating the quantum paradigm to improve the efficiency of traditional k-means algorithm.First,each vector and k cluster centers are prepared to be in quantum superposition,which are then utilized to compute the similarities in parallel.Second,the quantum amplitude estimation algorithm is applied to convert the similarities into quantum bit.Finally,from the quantum bit the most similar center of the vector is obtained using the quantum algorithm for determining the minimum.Theoretical analysis shows that,compared with the traditional quantum algorithm,the time complexity of the quantum k-means algorithm decreases under given condition and the space complexity diminishes exponentially.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第2期539-544,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61571226) 江苏省自然科学基金项目(BK20140823)
关键词 人工智能 聚类 量子计算 量子算法 量子k-means artificial intelligence clustering quantum computation quantum algorithm quantum k-means
  • 相关文献

参考文献9

二级参考文献106

  • 1刘明辉,赵子亮,李骏,王云成,王建华.北京城市公交客车循环工况开发[J].汽车工程,2005,27(6):687-690. 被引量:19
  • 2李孟良,张建伟,张富兴,赵春明.中国城市乘用车实际行驶工况的研究[J].汽车工程,2006,28(6):554-557. 被引量:44
  • 3Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge University Press, Cambridge, 2000.
  • 4Vedral V, Plenio M B. Basics of quantum computation[J]. Rep. Prog. Quantum Electron. , 1998:22.
  • 5Shot P W. Algorithms for quantum computation: discrete log arithms and factoring[C].Proc. 35^th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, LosAlamitos, CA, 1994:124-134.
  • 6Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM J. Comp., 1997, 26:1484-1509.
  • 7Grover Lov K. Quantum mechanics helps in searching for a nee die in a haystack[J]. Phys. Rev. Lett., 1997, 79: 325-328.
  • 8Brassard G, Hoyer P, Tapp A. Quantum Counting[C].Proceedings of the 25^th International Colloquium on Automata, Language, and Programming: ICALP, Lecture Notes in Computer Science, Springer, Berlin, 1998, 1443: 820.
  • 9Mitchell T. Machine Learning[M]. McGraw Hill, 1997.
  • 10Duda R O, Hart P E, Stork D G. Pattern classification (Second Edition) [M]. Wiley-Interscience, New York, 2001.

共引文献122

同被引文献51

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部