期刊文献+

基于改进萤火虫算法的高光谱遥感多特征优化方法 被引量:6

Hyper-spectral Multiple Features Optimization Using Improved Firefly Algorithm
原文传递
导出
摘要 目前,高光谱遥感影像分类时光谱信息使用较多,难以充分挖掘空间信息。针对该问题,提出一种基于改进萤火虫算法(Firefly Algorithm,FA)的高光谱遥感多特征优化方法。首先提取高光谱遥感影像的4种空间特征:局部统计特征、灰度共生矩阵特征、Gabor特征和形态学特征,并与波段选择的部分光谱波段组合,构建多特征集合;然后利用萤火虫算法对提取的多特征集合进行优化和特征选择,针对萤火虫算法收敛速度较慢问题,借鉴粒子群优化算法,引入随机惯性权重改进了萤火虫算法的位置更新公式;目标函数采用JM距离(Jeffreys-Matusita Distance)和Fisher Ratio。利用两组城市高光谱遥感数据进行了土地覆被分类研究,并将仅利用原始光谱信息进行波段选择的分类结果与利用多特征信息的分类结果进行了对比分析。实验表明:随机惯性权重可以提高FA特征选择的速度,且优化后的光谱与空间信息特征有助于提高城市土地覆被分类的精度,两组实验数据的特征优选结果统计均表明空间特征中的形态学特征被选择次数最多,局部统计特征和形态学特征相对于GLCM特征和Gabor特征更有助于高光谱遥感图像的分类。 The utilization of hyperspectral remote sensing image is mainly based on the spectral information,and the spatial information is always be ignored.To solve this problem,a novel hyperspectral multiple features optimization approach based on improved firefly algorithm is presented. Firstly, four spatial features,the local statistical features, gray level co-occurrence matrix features, Gabor filtering features and morphological features of hyperspectral remote sensing image are extracted, and some spectral bands are selected and then combined with these spatial features, and the feature set is constructed.Then, the firefly algorithm is used to optimize the extracted features.In view of the slow convergence speed of firefly algorithm, we use the random inertia weight from particle swarm optimization algorithm to modifiy the location update formula of firefly algorithm,and JM(Jeffreys-Matusita)distanee and Fisher Ratio are used as the objective function.Two urban hyperspectral datasets are used for performance evaluation, and the classification results derived from spectral information and spectral-spatial information are compared. The experiments show that random inertia weight can improve the speed of FA-based feature selection algorithm,the performance with multiple features is better than that of spectral information for urban land cover classification,The statistical results of the two sets of experimental data indicate that the selected number of morphological features are the most in the four spatial features.The local statistical features and morphological features are more helpful to the classification of hyperspectral remote sensing images than GLCM and Gabor features.
作者 刘慧珺 苏红军 赵波 Liu Huijun,Su Hongjun, Zhao Bo(School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)
出处 《遥感技术与应用》 CSCD 北大核心 2018年第1期110-118,共9页 Remote Sensing Technology and Application
基金 国家自然科学基金项目"高光谱遥感影像多特征优化模型与协同表示分类"(41571325) 江苏高校"青蓝工程"资助
关键词 高光谱遥感 多特征优化 特征选择 萤火虫算法 Hyperspectral remote sensing Multiple features optimization Feature selection Firefly algorithm
  • 相关文献

参考文献5

二级参考文献66

  • 1孙伟伟,刘春,施蓓琦,李巍岳.基于随机矩阵的高光谱影像非负稀疏表达分类[J].同济大学学报(自然科学版),2013,41(8):1274-1280. 被引量:4
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 3王立国,谷延锋,张晔.基于支持向量机和子空间划分的波段选择方法[J].系统工程与电子技术,2005,27(6):974-977. 被引量:13
  • 4孙家柄 舒宁 关泽群.遥感原理方法和应用[M].北京:测绘出版社,1997..
  • 5Carter J H. The Immune System as a Model for Pattern Recognition and Classification[J], Journal of the American Medical Informatics Association,2000. 7(3): 28-41.
  • 6Hunt J E, Cooke DE. Learning Using an Artificial Immune System[J]. Journal of Network and Computer Application, 1996, 19(2): 189-212.
  • 7Timmis J, Neal M, Hunt J. An Artificial Immune System for Data Analysis[J]. Biosystem, 2000, 55 (1/3):143-150.
  • 8Timmis J, Neal M. A Resource Limited Artificial Immune Systems for Data Analysis[J]. Knowledge Based Systems . 2002 14(3/4): 121-130.
  • 9Timmis J. Artificial Immune Systems: A Novel Data Analysis Technique Inspired by the Immune Network Theory [D]. Wales: The University of Wales, 2000.
  • 10童庆禧,张兵,郑兰芳.Hyperspectral Remote Sensing(高光谱遥感).Beijing:Higher Education Press(北京:高等教育出版社),2006.

共引文献31

同被引文献75

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部