期刊文献+

基于深度学习的短时交通流预测研究 被引量:97

Short-term Traffic Flow Prediction Based on Deep Learning
下载PDF
导出
摘要 针对交通流时间序列,在深度学习的理论框架下,构建基于LSTM-RNN的城市快速路短时交通流预测模型.根据交通流的时空相关性完成时间序列的重构,依靠模型训练对时空关联特性进行识别和强化,兼顾精度和时效性确定神经网络深度,完成短时交通流预测模型搭建.基于Tensor Flow的Keras完成LSTM-RNN的逐层构建和精细化调参,利用路网实测数据样本完成算法验证,实现模型本地保存并根据预测精度进行自适应更新.结果表明,本文所采用的预测算法精度高,受训练样本量的限制较小,实时性、扩展性和实用性均得到有效提高. This paper proposes a traffic flow time series prediction model for urban expressway based on LSTMRNN under deep learning framework. First, we refactor the traffic time series with integrated spatial and temporal correlation of traffic flow, making LSTM-RNN obtain and strengthen the ability of data mining. Next, network depth is determined by both precision and timeliness during model designing. And then, we take use of Keras based on Tensor Flow to implement LSTM-RNN with building model layer by layer and regulating all the parameters subtly. We validate the model utilizing the measured data from real express way, and implement local model saving and updating regularly according to the prediction accuracy. It is proved that the proposed model performs an accurate prediction for short-term traffic flow which is not restricted by the training sample size to a large extent. Meanwhile, the extensibility and practicability of the model is improved significantly.
作者 王祥雪 许伦辉 WANG Xiang-xue, XU Lun-hui(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Chin)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2018年第1期81-88,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(61263024) 广东省自然科学基金(2016A030310104)~~
关键词 交通工程 交通流预测 LSTM-RNN 时间序列 深度学习 traffic engineering traffic flow prediction LSTM-RNN time series deep learning
  • 相关文献

参考文献2

二级参考文献25

  • 1李松,贺国光,张杰.车头间距与高速公路交通流混沌[J].西南交通大学学报,2007,42(3):305-309. 被引量:5
  • 2Gers F A, Sehmidhuber J. LSTM Recurrent Networks Learn Simple Context-Free and Context-Sensitive Languages. IEEE Trans on Neu-ral Networks, 2001, 12(6): 1333-1340.
  • 3Mitchell T M. Machine Learning. New York, USA: McGraw Hill, 1997.
  • 4Yang Jian, Zhang D, Alejandro F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelli-gence, 2004, 26(1): 117-129.
  • 5Wachenfeld S, Klein H V, Jiang Xiaoyi. Recognition of Screen-Rendered Text//Proc of the 18th International Conference on Pat-tern Recognition. Hongkong, China, 2006, Ⅱ : 1086-1089.
  • 6von Ahn L, Blum M, Hopper N J, et al. CAPTCHA: Using Hard AI Problems for Security// Proc of the 22nd International Confer-ence on Theory and Applications of Cryptographic Techniques. War-saw, Poland, 2003 : 294-311.
  • 7Rusu A, Thomas A, Govindaraju V. Generation and Use of Hand- written CAPTCHAs. International Journal on Document Analysis and Recognition, 2010,13(1) :49-64.
  • 8Rusu A, Govindaraju V. Handwritten CAPTCHA: Using the Differ-ence in the Abilities of Humans and Machines in Reading Handwrit-ten Words//Proc of the 9th International Workshop on Frontiers in Handwriting Recognition. Tokyo, Japan, 2004 : 226-231.
  • 9von Ahn L, Maurer B, McMillen C, et al. reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science, 2008, 321 (5895) : 1465-1468.
  • 10Chellapilla K, Simard P. Using Machine Learning to Break Visual Human Interaction Proofs (HIPs) // Weiss Y, Scholkopf B, Platt J, eds. Advances in Neural Information Processing Systems. Cam- bridge, USA: M IT Press, 2004, 17: 265-272.

共引文献195

同被引文献518

引证文献97

二级引证文献535

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部