期刊文献+

驾驶人分心状态判别支持向量机模型优化算法 被引量:11

Identification of Driver Distraction States with Optimized Support Vector Machine Method
下载PDF
导出
摘要 驾驶人分心状态判别是分心驾驶预警系统的重要基础.建立以径向基为核函数的驾驶人分心状态判别SVM模型,采用遗传算法(GA)优化SVM模型惩罚参数C和核函数参数g,并利用模拟驾驶器实验平台采集的驾驶绩效数据对模型进行验证.结果表明,采用GASVM模型能够准确识别自由流和拥挤流场景下驾驶人分心状态,判别精度分别为94.5%和96.3%.与决策树C4.5和交叉验证(CV)-SVM对比表明,GA-SVM在准确率、精准率、召回率和F1值等模型性能方面均优于其他2种方法.本文建立的模型能够有效地判别驾驶人分心状态,可为驾驶人分心预警系统和分心控制策略提供依据. The identification of driver distraction states is the important component of driver distraction warning system. This paper establishes Support Vector Machine(SVM) model based on Radial Basis Function to identify driver distraction states. The genetic algorithm(GA) is used to optimize the parameters of SVM model. The optimized SVM model is used in the identification of driver distraction states, and the effectiveness of the model is validated by experimental data that used the driving performance data. The results show that the recognition accuracies of driver distraction states in free flow condition and crowed flow condition are 94.5% and 96.3%,respectively. Compared to the C4.5 and Cross Validation(CV)-SVM, the performances of GA-SVM are superior to the other two methods. This model can effectively determine the driver distraction state, which can provide data support for driver distraction warning system and control strategy.
作者 张辉 钱大琳 邵春福 钱振伟 菅美英 ZHANG Hui;QIAN Da-lin;SHAO Chun-fu;QIAN Zhen-wei;JIAN Mei-ying(1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; 2. Department of Civil Engineering, Tsinghua University, Beijing 100084, Chin)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2018年第1期127-132,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点研发计划资助(2017YFC0804800) 国家自然科学基金(51678044 91746201) 中央高校基本科研业务费(2017JBM307)~~
关键词 交通工程 分心状态判别 支持向量机 遗传算法 驾驶绩效 参数优化 traffic engineering driver distraction states identification support vector machine model (SVM) genetic algorithm (GA) driving performance parameter optimization
  • 相关文献

参考文献1

二级参考文献18

  • 1秦玉平,王秀坤.一种改进的快速支持向量机分类算法研究[J].大连理工大学学报,2007,47(2):291-294. 被引量:6
  • 2Westat. NHTSA Driver Distraction Expert Working Group Meetings: Summary and Proceedings [R]. Washington DC: National Highway Traffic Safety Administration, 2010.
  • 3METZ B,LANDAU A,JUST M. Frequency of Sec- ondary Tasks in Driving-Results from Naturalistic Driving Data[J]. Safety Science, 2014,68 : 195-203.
  • 4RANNEY T A, HARBLUK J L,NOY Y I. Effects of Voice Technology on Test Track Driving Perform- ance:Implications for Driver Distraction[J]. Human Factors:The Journal of the Human Factors and Er gonomics Society,2005,47(2) :439-454.
  • 5VARDAKI S, YANNIS G, PAPAGEORGIOU S G. Assessing Selected Cognitive Impairments Using a Driving Simulator: A Focused Review[J]. Advances in Transportation Studies, 2014,34 : 105-128.
  • 6SALVVUCCI D D, MARKLEY D, ZUBER M, et al. iPod Distraction: Effects of Portable Music-player Use on Driver Performance[C]// ACM. Proceedings of the SIGCHI Conference on Human Factors in Compu- ting Systems. New York: ACM, 2007 : 243-250.
  • 7MITSOPOULOS-RUBENS E, TROTTER M J, LENNE M G. Effects on Driving Performance of In- teracting with an In-vehicle Music Player: A Compar- ison of Three Interface Layout Concepts for Informa- tion Presentation[J]. Applied Ergonomics, 2011,42 (4) :583-591.
  • 8WITT G J,ZHANG H,SMITH M R H. Safety Ve- hicle ( s ) Using Adaptive Interface Technology (SAVE-IT) : Phase I Progress Report[R]. Wash- ington DC:US Department of Transportation,2004.
  • 9MICHON J A. Generic Intelligent Driver Support [M]. London:CRC Press, 1993.
  • 10PIECHULLA W, MAYSER C, GEHRKE H, et al. Reducing Drivers' Mental Workload by Means of an Adaptive Man-machine Interface[J]. Transportation Research Part F,2003,6(4) :233-248.

共引文献27

同被引文献59

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部