期刊文献+

基于改进支持向量机的高端装备制造业供应商分类研究 被引量:2

Research on Supplier Classification in High-end Equipment Manufacturing Industry Based on Improved Support Vector Machine
下载PDF
导出
摘要 针对现有供应商分类方法应用于高端装备制造业供应商所存在的局限性,从相互依赖视角构建了高端装备制造业供应商分类指标体系,提出了基于改进支持向量机的高端装备制造业供应商分类模型。该模型根据供应商误分代价不同,设计代价敏感支持向量机分类器,利用粒子群算法优化分类器的参数,并采用概率输出方法对多个优化的二类分类器的结果进行组合以实现多类分类。实验结果表明,该模型提高了现有方法的分类效果,可以降低总体误分代价,有效识别出对高端装备制造企业具有重大影响的供应商,为高端装备制造企业实施供应商分类管理提供了依据。 There are some limitations of existing supplier classification methods which target high-end equipmentmanufacturing industry. From the perspective of interdependence, the paper divides suppliers of high-end equip-ment manufacturing industry into four types, including interdependence, supplier dominance, buyer dominanceand independence. Meanwhile, the paper constructs a supplier classification index system based on literatureanalysis, interviews and expert judgment. The paper further proposes a classification model of high-end equip-ment manufacturing industry suppliers based on improved support vector machine. According to different misclas-sification costs of suppliers, the proposed model designs the cost sensitive support vector machine classifier. Theparticle swarm optimization algorithm is used to optimize model parameters, and the obtained optimized two-classmodels are assembled to realize multi-class classification according to probability outputs. The experimentalresults show that the proposed model can improve the classification performance of existing methods and reduceoverall cost of errors. The proposed model also can identify suppliers which have significant impact on high-endequipment manufacturing enterprises effectively. The paper aims to provide a theoretical basis and practicalguideline for high-end equipment manufacturing enterprises to implement supplier classification management.
作者 李坤 石春生 郑作龙 王成刚 LI Kun1'2 , SHI Chun-sheng , ZHENG Zuo-long3 , WANG Cheng-gang1(1. School of Management, Harbin Institute of Technology, Harbin 150001, China ; 2. School of Marketing Manage- ment, Liaoning Technical University, Huludao 125105, China ; 3. School of Business, Suzhou University of Science and Technology, Suzhou 215009, Chin)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2018年第3期41-49,共9页 Operations Research and Management Science
基金 国家自然科学基金项目(71272176)
关键词 供应商分类 相互依赖 支持向量机 代价敏感学习 粒子群算法 supplier classification interdependence support vector machine cost sensitive learning particleswarm optimization
  • 相关文献

参考文献10

二级参考文献115

共引文献138

同被引文献37

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部