期刊文献+

基于自由权矩阵的时变时延线性群系统编队控制 被引量:5

Formation control for linear swarm systems with time-varying delays based on free-weighting matrices
原文传递
导出
摘要 研究了基于自由权矩阵方法的时变时延线性群系统编队控制问题。首先,基于一致性理论,设计了具有时变时延的线性群系统编队控制协议。其次,通过变量代换,将时延条件下的线性群系统编队控制问题转化为时延系统的镇定问题。构造Lyapunov-Krasovskii函数,并利用自由权矩阵方法对时延系统的镇定问题进行分析,得到了保守性较小的线性矩阵不等式(LMI)判据,并求解出时延上界和编队控制器增益。最后,通过仿真实验,验证了方法的有效性。 Based on free-weighting matrices method,the formation control for the linear swarm systems with time-varying delays is investigated.First,aprotocol for the formation control with time-varying delays is proposed based on consensus theory.Second,the formation control problem is transformed into the stabilization problem of delay-dependent system using variable substitution.The Lyapunov-Krasovskii function is constructed,and the stabilization problem of the delay-dependent system is analyzed using free-weighting matrices method.Then,the Linear Matrix Inequality(LMI)criterion with lower conservatism is obtained.The upper bounds of delays and the controller gains are also given.Finally,the effectiveness of the method is verified through the simulation experiments.
作者 石晓航 张庆杰 吕俊伟 SHI Xiaohang1, ZHANG Qingjie2, LYU Junwei1(2 Department of Control Engineering, Naval Aeronautical University, Yantai 264001, China 2Department of Aircraft Control, Aviation University of Air Force, Changchun 130022, Chin)
出处 《航空学报》 EI CAS CSCD 北大核心 2018年第3期199-209,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61004002) 航空科学基金(20155884012)~~
关键词 群系统 一致性 编队控制 自由权矩阵 时变时延 swarm systems consensus formation control free-weighting matrices time-varying delays
  • 相关文献

参考文献4

二级参考文献57

  • 1Lin E Jia Y M, Du J P, et al. Distributed leadless coordination for networks of second-order agents with time-delay on switching topology[C]. 2008 American Control Conf. Seattle, 2008: 1564-1569.
  • 2Tian Y P, Liu C L. Robust consensus of multiagent systems with diverse input delays and asymmetric intereonnection perturbations[J]. Automatica, 2009, 45(5): 1347-1353.
  • 3Xiao F, Wang L. Consensus protocols for discrete- time multi-agent systems with time-varying delays[J]. Automatica, 2008, 44(10): 2577-2582.
  • 4Lin P, Jia Y M. Consensus of a class of second-order multiagent systems with time-delays and jointly-connected topologies[J]. IEEE Trans on Automatic Control, 2010, 55(3): 778-784.
  • 5Wu M, He Y, She J H, et al. Delay-dependent Criteria for robust stability of time-varying delay systems[J]. Automatica, 2004, 40(8): 1435-1439.
  • 6Lin P, Jia Y M, Du J E et al. Average consensus control for networks of second-order agents with fixed topology and time-delay[C]. Proc of the 26th Chinese Control Conf. Zhangjiajie, 2007: 577-581.
  • 7Porfiri M, Roberson D G, StilweU D J. Tracking and formation control of multiple autonomous agents: A two-level consensus approach[J]. Automatica, 2007, 43(8): 1318-1328.
  • 8Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader[J]. IEEE Trans on Automatic Control, 2009, 54(2): 293-307.
  • 9Lin J, Morse A S, Anderson B D O. The multi-agent rendezvous problem: The synchronous case[J]. SIAM J on Control and Optimization, 2007, 46(6): 2096-2119.
  • 10Casbeer D W, Beard R. Distributed information filtering using consensus filters[C]. 2009 American Control Conf. StLouis, 2009: 1882-1887.

共引文献63

同被引文献34

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部