摘要
从积分方程角度出发,研究了波动方程导出的无穷维Hamilton算子的本征函数系的完备性问题.首先计算了Hamilton算子本征值问题导出的非齐次边值问题的Green函数矩阵,其次利用Green函数法证明了无穷维Hamilton算子本征函数系的完备性.文中的方法对某些辛弹性力学模型的研究具有一定借鉴意义.
Completeness problem of eigenfunction systems of an infinite-dimensional Hamiltoni- an operators derived from the wave equations is considered from the perspective of integral equa- tions. Firstly,the matrix of Green functions is obtained for the nonhomogeneous eigenvalue equa- tions of the Hamiltonian operator. Secondly,the completeness of the eigenfunction systems is prov- en by the method of Green functions. The method used can be as a reference for the study of some symplectic elasticity models.
作者
乔艳芬
侯国林
QIAO Yan-fen, HOU Guo-lin(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021 ,Chin)
出处
《内蒙古大学学报(自然科学版)》
CAS
北大核心
2018年第2期113-119,共7页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金(11361034)
高等学校青年科技英才计划项目(NJYT-15-B03)
内蒙古自治区自然科学基金(2016MS0105)资助