期刊文献+

石墨烯/铜复合材料剪切性能的分子动力学模拟 被引量:9

Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites
原文传递
导出
摘要 采用分子动力学方法系统地研究了石墨烯/铜复合材料的剪切力学性能,包括剪切弹性模量、剪切屈服强度、剪切破坏强度及剪切变形机制。研究发现,与单晶铜的剪切模拟相比较,石墨烯的加入显著增强了石墨烯/铜复合材料的剪切强度,并且剪切强度随着石墨烯体积分数的增大而提高。复合材料中的石墨烯层与铜层产生了协同作用,即石墨烯层阻碍了铜的位错扩展,铜层限制了石墨烯的结构屈曲。对含球形缺陷的石墨烯/铜复合材料的剪切性能也进行了研究。结果表明,不同位置和数量的球形小缺陷对复合材料的剪切性能影响不大,小缺陷石墨烯/铜复合材料仍具有较好的性能和使用价值。但随着缺陷直径的增大,复合材料的剪切强度明显减小。 The shear properties of graphene/copper composites were systematically studied by molecular dynamics method,including shear elastic modulus,shear yield strength,shear failure strength and shear deformation mechanism.It is found that the addition of graphene significantly improves the shear strength of the graphene/copper composites and the shear strength increases with the increasing of the volume fraction of graphene.The graphene layer in the composites has synergistic effect with the copper layer,i.e.the graphene layer prevents the copper dislocation propagation,and the copper layer blocks the buckling of the graphene structure.The shear properties of the graphene/copper composites with spherical defects were also investigated.The results show that the small size defects with different number and location have little effect on the shear properties of the composites.The graphene/copper composites with small defect still have good performance and application value.But with the increasing of the diameter of the defects,the shear strength of the composites decreases distinctly.
作者 华军 宋郴 段志荣 肖攀 HUA Jun, SONG Chen, DUAN Zhirong, XIAO Pan(School of Science, Xi~an University of Architecture & Technology, Xi~an 710055, Chin)
出处 《复合材料学报》 EI CAS CSCD 北大核心 2018年第3期632-639,共8页 Acta Materiae Compositae Sinica
基金 西安建筑科技大学校人才科技基金(DB12062)
关键词 石墨烯/铜复合材料 分子动力学 剪切 缺陷 位错 graphene/copper composites molecular dynamics shear defect dislocation
  • 相关文献

参考文献2

二级参考文献63

  • 1杨刚,张斌.类石墨烯二维原子晶体的微态理论模型[J].力学学报,2015,47(3):451-457. 被引量:2
  • 2莫尊理,郭瑞斌,陈红,孙亚玲,李贺军.石墨/树状大分子复合材料的分子动力学模拟[J].复合材料学报,2007,24(4):58-62. 被引量:5
  • 3Novoselov K S,Fal'ko V I,Colombo L. A roadmap forgraphene[J].NATURE,2012,(7419):192-200.
  • 4SinghV,Joung D,Zhai L. Graphene based materials:past,present and future[J].Progress in Materials Science,2011,(08):1178-1271.
  • 5Rafiee M A,Rafiee J,Wang Z. Enhanced mechanical properties of nanocomposites at low graphene content[J].ACS Nano,2009,(12):3884-3890.
  • 6Bakshi S R,Lahiri D,Agarwal A. Carbon nanotube reinforced metal matrix composites-a review[J].International Materials Reviews,2010,(01):41-64.
  • 7Liu C B,Wang K,Luo S L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films[J].SMALL,2011,(09):1203-1206.
  • 8Xu C,Wang X,Zhu J. Graphene-metal particle nanocomposites[J].Journal of Physical Chemistry C,2008,(50):19841-19845.
  • 9Wang B,Wu X L,Shu C Y. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry,2010,(47):10661-10664.
  • 10Xu Z P,Buehler M J. Interface structure and mechanics between graphene and metal substrates:a first-principles study[J].Journal of Physics: Condensed Matter,2010,(48):485301.

共引文献22

同被引文献99

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部