期刊文献+

基于人眼视觉特性的自适应支持权重立体匹配算法 被引量:5

Adaptive Support Weight Stereo Matching Algorithm Based on Human Visual Characteristics
原文传递
导出
摘要 立体匹配是计算机视觉领域研究的重点,大部分立体匹配方法都是将图像当作数字信息进行数学计算,缺少与实际人眼视觉特征的联系。结合人眼的同心圆拮抗式感受野以及符合人眼特性的HSI色彩空间模型对原自适应支持权重(ASW)算法的权重计算进行了改进,并通过左右一致性校验和中值滤波方法进行视差优化。在VS2010平台对几组国际标准图像进行测试,结果表明,相比原始ASW算法,该方法在低纹理区域、深度不连续区域的匹配精度都有所提高,根据测试图像的不同,提高程度在10%至20%不等,总体匹配精度和近年主流局部匹配方法相当。 Stereo matching is the focus of research in the field of computer vision. Most of the stereo matching algorithm take mathematical calculation as digital information, and lack the connection with the actual human visual characteristics. We combine the concentric antagonistic receptive field of the human eye and the HSI colour space model to improve the weight calculation of the original adaptive support weight (ASW), and optimize the parallax by means of left-right consistency check and median filtering. The test results of several groups of international standard images in VS2010 platform show that, this method has higher matching accuracy than that of the original ASW algorithm in the low texture regions and depth discontinuities area. According to the difference of the test images, the improvement ranges from 10% to 20%, and the overall matching accuracy is similar to that of the mainstream local matching method in recent years.
作者 刘雪松 沈建新 张燕平 Liu Xuesong, Shen Jianxin, Zhang Yanping(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics Nanjing, Jiangsu 210016, Chin)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第3期264-270,共7页 Laser & Optoelectronics Progress
基金 江苏省前瞻性联合研究项目(BY2015003-03) 江苏省科技支撑计划项目(SBE2014070704)
关键词 图像处理 立体匹配 自适应支持权重 HSI色彩空间 视觉特性 image propcessing stereo matching adaptive support weight HSI colour space visual characteristics
  • 相关文献

参考文献6

二级参考文献50

  • 1徐青,王敬东,李鹏,李洪海.基于图像分割的快速立体匹配算法[J].计算机工程,2006,32(22):209-211. 被引量:6
  • 2文贡坚.一种基于特征编组的直线立体匹配全局算法[J].软件学报,2006,17(12):2471-2484. 被引量:21
  • 3Zhang K, Lu J, La{ruit G. Crosabased local stereo matching using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7) : 1073- 1079.
  • 4Veksler O. Fast variable window for stereo correspondence using integral images [ C]. 1EEE Computer Society Conference on Computer Vision and Pattern Recognitions, 2003, 1: 1-556- 1-561.
  • 5Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(4): 650-656.
  • 6Yang Q, Wang L, Yang R, et al. Stereo matching with color weighted correlation, hierarchical belief propagation, and occlusion handling[J]. IEEE Transactions on Pootem Analysis and Mechine Intelligence, 2009, 31(3): 492-504.
  • 7Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure [J]. Proceedings of the IEEE 18th International Conference on Pattern Recognition, 2006, 3: 15-18.
  • 8Hu W, Zhagn K, Sun L, et al.Virtual support window for adaptive-weight stereo matching[C]. Proceedings of the IEEE Visual Communications and Image Processing, 2011. 1-4.
  • 9De-Maeztu L, Villanueva A, Cabeza R. Stereo matching using gradient similarity andlocally adaptive support-weight[J]. Pattern Recogn Lett, 2011, 32(13): 1643-1651.
  • 10Lei C, Seizer J, Yang Y. Region-tree based stereo using dynamic programming optimization[J]. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Reeognitim, 2006, 2: 2378-2385.

共引文献107

同被引文献33

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部