摘要
基于SiC结势垒肖特基(JBS)二极管工作原理及其电流/电场均衡分布理论,采用高温大电流单芯片设计技术及大尺寸芯片加工技术,研制了1 200 V/100 A高温大电流4H-SiC JBS二极管。该器件采用优化的材料结构、有源区结构和终端结构,有效提高了器件的载流子输运能力。测试结果表明,当正向导通压降为1.60 V时,其正向电流密度达247 A/cm^2(以芯片面积计算)。在测试温度25和200℃时,当正向电流为100 A时,正向导通压降分别为1.64和2.50 V;当反向电压为1 200 V时,反向漏电流分别小于50和200μA。动态特性测试结果表明,器件的反向恢复特性良好。器件均通过100次温度循环、168 h的高温高湿高反偏(H3TRB)和高温反偏可靠性试验,显示出优良的鲁棒性。器件的成品率达70%以上。
Based on the working principle of SiC junction barrier Schottky( JBS) diodes and the theory of current/electric field equilibrium distribution,1 200 V/100 A high temperature high current 4 H-SiC JBS diodes were fabricated by using high temperature high current monolithic chip design and large-area chip processing techniques. The carrier transport capability of the device was effectively improved by adopting the optimized structures of material,active region and termination. The test results show that the forward current density of the device achieves 247 A/cm^2( considering the total chip area)when the forward voltage drop is 1. 60 V. At the test temperature of 25 and 200 ℃,the forward voltage drops of the device are 1. 64 and 2. 50 V respectively when the forward current is 100 A,and the reverse leakage currents are less than 50 and 200 μA respectively when the reverse voltage is 1 200 V. The dynamic characteristic test results show that the reverse recovery characteristic of the device is good. The device shows good robustness after 100 times of temperature cycle, 168 h reliability tests of hightemperature high humidity high reverse bias( H3 TRB) and high temperature reverse bias. The device yields are more than 70%.
作者
汤益丹
李诚瞻
史晶晶
白云
董升旭
彭朝阳
王弋宇
刘新宇
Tang Yidan1,2, Li Chengzhan3, Shi Jingjing3, Bai Yun1, Dong Shengxu1,2, Peng Zhaoyang1,2, Wang Yiyu3, Liu Xinyu1(1. High-Frequency High-Voltage Devices and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China ; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Zhuzhou CRRC Times Electric Co. , Ltd., Zhuzhou 412001, Chin)
出处
《半导体技术》
CAS
CSCD
北大核心
2018年第4期266-273,共8页
Semiconductor Technology
基金
国家重点研发计划资助项目(2016YFB0100601)