期刊文献+

局部感知递归神经网络在语言模型中的应用 被引量:4

Character-Level language modeling with local-aware recurrent neural network
下载PDF
导出
摘要 数据序列预测被许多人认为是机器学习和人工智能领域中的关键问题,在一系列的单词或字符数据处理任务的语言模型中,递归神经网络展示出了当前最优秀的序列预测能力。文中通过将三层RNN按一定层次组合在一起,由低层到高层使每一层负责不同层次的信息处理,从而使新模型具有更强的信息综合能力,从而使得模型更容易处理较长的数据序列。在Penn Treebank Data数据集做字符级(Character-Level)语言模型中的测试结果显示,新模型获得了与CNN-LSTM等当前最好模型相匹敌的成绩。 Data sequence predicting is considered by Scientist as a key problem in machine learning and artificial intelligent. Meanwhile,the recurrent neural network has shown it 's state-to-art sequence prediction ability in a series of word or character data sequence processing. In this paper,three layers of recurrent neural network were stacked together as a special hierarchy,from low level to high level,each processing specific level of data sequence, to make a new model that is more powerful on data comprehensive and long sequence processing. On Penn Treebank Data dataset test,the language model achieves the result that is competitive to models as CNN-LSTM's.
作者 王刚 刘惠义 WANG Gang,LIU Hui-yi(School of Computer and Information Technology, Hohai University, Nanjing 211100,Chin)
出处 《信息技术》 2018年第4期94-97,102,共5页 Information Technology
关键词 自然语言处理 神经网络 递归神经网络 LSTM natural language processing neural net w o r k recurrent neural net w o r k long short-term memory
  • 相关文献

同被引文献37

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部