期刊文献+

基于PLSR的深度信念网输出权值确定方法 被引量:1

Determination Method of Output Weights for DBN Based on PLSR
原文传递
导出
摘要 针对深度信念网络(Deep Belief Networks,DBN)微调阶段过度依赖梯度而导致很难获取最优输出权值的问题,提出一种基于偏最小二乘回归(Partial Least Square Regression,PLSR)的DBN输出权值确定新方法。通过PLSR和DBN相结合,实现对DBN最后一个隐含层状态进行主成分提取,在最后一个隐含层与输出层之间建立PLSR模型。以更精确的特征来确定更好的输出权值。在一系列标准数据集上的实验结果表明,该方法能够获取更好的DBN输出权值,从而提高DBN的性能。 The fine-tuning of deep belief network (DBN) is too dependent on gradient descent and difficult to obtain the optimal output weights, a new method to determine the output weights of DBN based on partial least square regression (PLSR) is proposed to solve this problem. The principal component in the last hidden layer state of DBN is extracted by combining PLSR and DBN, PLSR model is built between the last hidden layer of DBN and the output layer, so that better output weights are determined with more accurate features. The experimental results on a series of standard datasets show that the method proposed can obtain better DBN output weights, and the performance of DBN is correspondingly improved.
作者 索明何 程乐 SUO Ming-he;CHENG Le(Electronic Engineering Research Center, Huai'an College of Information Technology, Huai'an 223003, Chin)
出处 《控制工程》 CSCD 北大核心 2018年第4期668-676,共9页 Control Engineering of China
基金 江苏省高校自然科学基金项目(16KJB520049)
关键词 深度信念网络 输出权值 偏最小二乘回归 主成分提取 Deep belief network output weightsi partial least square regression principal componentextraction
  • 相关文献

参考文献5

二级参考文献71

  • 1Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
  • 2Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011:4688-4691.
  • 5Deselaers T, Hasan S, Bender O, et al. A deep learning approach to machine transliteration[C]. Proc of the 4th Workshop on Statistical Machine Translation. Athens, 2009: 233-241.
  • 6Fasel I, Berry J. Deep belief networks for real-time extraction of tongue contours from ultrasound duringspeech[C]. Proc of the 20th Int Conf on Pattern Recognition. Stroudsburg: Association for Computational Linguistics, 2010: 1493-1496.
  • 7Deng L, Seltzer M L, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]. Proc of the 1 lth Annual Conf on Int Speech Communication Association. Makuhair, 2010: 1692-1695.
  • 8Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
  • 9Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver, 2007: 153-160.
  • 10Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

共引文献98

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部