期刊文献+

针对低检测概率的概率假设密度滤波算法 被引量:6

Probability Hypothesis Density Filtering Algorithm for Low Detection Probability
下载PDF
导出
摘要 当跟踪目标属于隐身目标、低空目标或处于强杂波和干扰环境,都会导致雷达的目标检测概率降低,丢失率较高。因此,本文着重研究PHD算法在检测概率较低的情况下跟踪稳定性不佳的缺陷,找出了一种适用于低目标检测概率的L-GMPHD滤波,通过对前一时刻状态估计值外推,若发生漏检,则将外推值加入当前时刻状态估计值中,确保了目标的状态估计不被裁剪去除。从MATLAB仿真结果可知,L-GMPHD滤波器处于检测概率较低的情况时,能够明显改善目标跟踪的稳定性。该方法能够保持高精度的多目标跟踪,具有良好的工程应用前景。 When the tracking target belongs to the stealth target,the low altitude target or in the strong clutter and interference environment,will lead to the radar target detection probability decreases,the loss rate is high. In this paper,a low detection probability filter is proposed for the PHD filter with poor tracking performance in the low detection probability environment. By measuring the state estimation value at the previous time,If there is undetected,the extrapolated value will be added to the current state estimate to ensure that the state estimation value of the target is not removed by cutting. The simulation results show that the proposed filter can improve the performance of target tracking under the low detection probability. The method can keep track of multiple targets with high precision,and has good engineering Prospects.
作者 张腾 曹晨 张靖 邢孟道 ZHANG Teng1,2, CAO Chen2, ZHANG Jing2, XING Mengdao1(1. National Key Lab. of Radar Signal Processing, Xidian Uni. , Xi'an 710071, China; 2. China Academy of Electronic and Information Technology, Beijing 100041, Chin)
出处 《中国电子科学研究院学报》 北大核心 2018年第1期36-41,共6页 Journal of China Academy of Electronics and Information Technology
基金 海军装备部预研项目
关键词 多目标跟踪 低目标检测概率 概率假设密度滤波(PHDF) 高斯混合概率假设密度GMPHD 状态值外推 multiple targets tracking low detection probability PHD filter GMPHD state estimate extrapolated value
  • 相关文献

参考文献5

二级参考文献56

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 2汤亚波,徐守时.基于D-S证据理论的多源遥感图像目标数据联合关联算法[J].中国科学技术大学学报,2006,36(5):466-471. 被引量:11
  • 3郭云飞,韦巍,薛安克.非线性滤波CRLB推导及在目标跟踪中的应用[J].光电工程,2007,34(4):26-29. 被引量:10
  • 4SHIN J, GUIBAS L, ZHAO F. A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks [ C ]// Proceeding of 2nd Workshop on Information Processing in Sensor Networks, Palo Alto, CA ,2003.
  • 5GOODMAN I R, MAHLER R,NGUYEN H. Mathematics of data fusion[ M]. Boston: Kluwer Academic Publishing Co., 1997.
  • 6MAHLER R. Multi-target Bayes filtering via first-order multitarget moments [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2003,39 : 1152-1178.
  • 7GEYER C. Likelihood inference for spatial point processes [G]// Barndorff-Nielsen. Stochastic Geometry Likelihood and Computation. 1999:79 - 140.
  • 8COX C R. Point processes [ M ]. Cambridge: Great Britain at the University Press, Cambridge, 1980.
  • 9VO B N, SINGH S, DOUCET A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J ]. IEEE Transactions on Aerospace and Electronic Systems ,2005,41 (4) : 1224 - 1245.
  • 10SASTRY C R,KAMEN E W. SME filter approach to multitarget tracking with radar measurements [ C ]//IEEE Proceeding-F Radar and Signal Processing, 1993:251 - 260.

共引文献21

同被引文献52

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部