期刊文献+

基于Tsallis分布和更新过程的欧式期权定价 被引量:1

Pricing of European Option Based onTsallis Entropy and Update Process
原文传递
导出
摘要 考虑到股价所具有的均值回复性、长记忆性和收益率尖峰后尾的特征,利用指数0-U过程和Tsallis熵分布分别对传统B-S定价模型的漂移项、随机波动项进行改进,并假设跳跃源服从比泊松过程更一般的更新过程,利用无套利思想和广义Ito公式,给出在股票价格服从一类更新跳一扩散过程下满足的偏微分方程,最后运用Feynman-Kae公式及等价鞅方法,计算欧式期权价格. Considering that the stock price has the mean reversion, long memory and the characteristics of fat-tailed, the exponential O-U process and the distribution of Tsallis entropy are used to improve the drift and random fluctuations respectively in this paper. And supposing information coming is a renewal process which is more common than Possion process, this paper deduces the partial differential equation when stock price obeys a kind of renewal jump-diffusion process using the APT theory and generalized Ito formula, at last obtains the European pricing formula by Feynman-Kac formula as well as the method of equivalent martingale.
作者 焦博雅 王永茂 JIAO Bo-ya;WANG Yong-mao(College of Science, Yanshan University, Qinhuangdao 066004, Chin)
机构地区 燕山大学理学院
出处 《数学的实践与认识》 北大核心 2018年第7期95-101,共7页 Mathematics in Practice and Theory
基金 廊坊市科技局科学技术研究项目(2016011031)
关键词 期权定价 更新过程 TSALLIS熵 ITO公式 option pricing renewal process tsallis entropy ito formula martingale
  • 相关文献

参考文献7

二级参考文献84

共引文献15

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部