期刊文献+

Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH 被引量:9

Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH
原文传递
导出
摘要 Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F. Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2024-2033,共10页 纳米研究(英文版)
基金 This work was supported by the National Key Sdentific Instrument and Equipment Development Project of China (No. 21627809), the National Natural Science Foundation of China (Nos. 21375047, 21377046, 21405059, 21575137, 21575050, and 21601064), Natural Science Foundation of Shandong Province (Nos. ZR2016JL013 and ZR2016BQ10), Graduate Innovation Foundation of University of Jinan (No. YCXB15004), and the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937).
关键词 CoMoS4 nanosheet array hydrogen evolution reaction anion exchange reaction neutral pH density functional theory CoMoS4 nanosheet array,hydrogen evolution reaction,anion exchange reaction,neutral pH,density functional theory
  • 相关文献

参考文献2

二级参考文献3

共引文献23

同被引文献40

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部