期刊文献+

Optical trapping of single quantum dots for cavity quantum electrodynamics 被引量:1

Optical trapping of single quantum dots for cavity quantum electrodynamics
原文传递
导出
摘要 We report here a nanostructure that traps single quantum dots for studying strong cavity-emitter coupling. The nanostructure is designed with two elliptical holes in a thin silver patch and a slot that connects the holes. This structure has two functionalities:(1) tweezers for optical trapping;(2) a plasmonic resonant cavity for quantum electrodynamics. The electromagnetic response of the cavity is calculated by finite-difference time-domain(FDTD) simulations, and the optical force is characterized based on the Maxwell's stress tensor method. To be tweezers, this structure tends to trap quantum dots at the edges of its tips where light is significantly confined. To be a plasmonic cavity, its plasmonic resonant mode interacts strongly with the trapped quantum dots due to the enhanced electric field. Rabi splitting and anti-crossing phenomena are observed in the calculated scattering spectra, demonstrating that a strong-coupling regime has been achieved. The method present here provides a robust way to position a single quantum dot in a nanocavity for investigating cavity quantum electrodynamics. We report here a nanostructure that traps single quantum dots for studying strong cavity-emitter coupling. The nanostructure is designed with two elliptical holes in a thin silver patch and a slot that connects the holes. This structure has two functionalities: (1) tweezers for optical trapping; (2) a plasmonic resonant cavity for quantum electrodynamics. The electromagnetic response of the cavity is calculated by finite-difference time-domain (FDTD) simulations, and the optical force is characterized based on the Maxwell's stress tensor method. To be tweezers, this structure tends to trap quantum dots at the edges of its tips where light is significantly confined. To be a plasmonic cavity, its plasmonic resonant mode interacts strongly with the trapped quantum dots due to the enhanced electric field. Rabi splitting and anti-crossing phenomena are observed in the calculated scattering spectra, demonstrating that a strong-coupling regime has been achieved. The method present here provides a robust way to position a single quantum dot in a nanocavity for investigating cavity quantum electrodynamics.
机构地区 School of Science
出处 《Photonics Research》 SCIE EI 2018年第3期182-185,共4页 光子学研究(英文版)
基金 National Key R&D Program of China(2016YFA0301300)
  • 相关文献

同被引文献13

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部