期刊文献+

A Maximum Principle for Fully Coupled Forward-Backward Stochastic Control System Driven by Lvy Process with Terminal State Constraints 被引量:1

A Maximum Principle for Fully Coupled Forward-Backward Stochastic Control System Driven by Lvy Process with Terminal State Constraints
原文传递
导出
摘要 This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the terminal time. The authors use an equivalent backward formulation to deal with the terminal state constraint, and then obtain a stochastic maximum principle by Ekeland's variational principle. Finally, the result is applied to the utility optimization problem in a financial market.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第4期859-874,共16页 系统科学与复杂性学报(英文版)
基金 supported by the National Science Fundation of China under Grant No.11271007 the National Social Science Fund Project of China under Grant No.17BGL058 Humanity and Social Science Research Foundation of Ministry of Education of China under Grant No.15YJA790051
关键词 Forward-backward stochastic control system driven by Levy process maximum principle optimal portfolio terminal state constraint. 控制系统 随机 终端 驾驶 控制问题 优化问题 金融市场 状态
  • 相关文献

参考文献3

二级参考文献28

  • 1Nualart D, Schoutens W. Chaotic and predicatable representation for Levy processes with applications in finance. Schostic Process Appl, 2000, 90:109-122.
  • 2Nualart D, Schoutens W. BSDE's and Feynman-Kac formula for Levy processes with applications in finance. Bernouli, 2001, 7:761-776.
  • 3Bahlali K, Eddahbi M, Essaky E. BSDE associated with Levy processes and application to PDIE. J Appl Math Stoch Anal, 2003, 16(1): 1-17.
  • 4Mitsui K, Tabata Y. A stochastic linear-quadratic problem with L-vy processes and its application to finance. Schostic Proecss Appl, 2008, 118:120-152.
  • 5Protter P. Stochastic Integration and Differential Equations. Berlin: Spring-Verlag, 1990.
  • 6Kohlmann M, Tang S. Optimal control of linear stochastic systems with singular costs, and the mean-variance hedging problem with stochastic market conditions. University Konstanz, 2000.
  • 7Hu Y, Oksendal B. Partial information linear quadratic control for jump diffusions: SIAM J Control Optim, 2008, 47(4): 1744-1761.
  • 8Zhang W, Chen B S. State feedback H∞ control for a class of nonlinear stochastic systems. SIAM J Control Optim, 2006, 44(6): 1973-1991.
  • 9Yong J, Zhou X Y. Stochastic Controls-Hamiltonian Systems and HJB Equations. New York, Berlin, Heidelberg: Springer- Verlag, 1999.
  • 10Cadenillas A, Karatzas I. The stochastic maximum principle for linear, convex optimal control with random coefficients. SIAM J Control Optim, 1995 33:590-624.

共引文献20

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部