摘要
采用扫描电镜、透射电镜和X-射线衍射仪研究了ZG1Cr11Ni2WMoV马氏体耐热钢在不同热处理后的显微组织和力学性能。结果表明:铸态经580℃×2 h空冷回火后,显微组织由板条状回火马氏体和沿原奥氏体晶界分布的δ-铁素体组成,在δ-铁素体周围分布着连续网状的M23C6型碳化物,碳复型透射电镜分析发现在马氏体板条内分布有纳米尺寸M6C-型碳化物;与铸态直接回火相比,经1050℃×1 h空冷淬火再经580℃×2 h空冷回火后,δ-铁素体含量减少且主要呈球状分布在回火马氏体基体上;1050℃×1 h空冷淬火处理对室温拉伸性能提高不大,但能显著提高室温冲击性能。
Microstructure and mechanical properties of ZG1Cr11Ni2WMoV martensitic heat resistant steel after different heat treatments were studied by means of scanning electron microscopy,transmission electron microscopy and X-ray diffractometer. The results show that the microstructure of the as-cast steel is composed of tempered lath martensite and δ-ferrite distributed along the pre-austenite grain boundary after tempering at 580 ℃ for 2 h by air cooling,and there is a continuous network of M23C6-type carbides around the δ-ferrite.Carbon complex transmission electron microscopy analysis shows that nano-sized M6 C-type carbides are distributed in martensite lath.Compared with the directly tempered steel,the content of δ-ferrite of the steel decreases and it is mainly spherical distribution in the tempered martensite matrix after quenching at 1050 ℃ for 1 h by air cooling and then tempering at 580 ℃ for 2 h by air cooling. The quenching treatment at 1050 ℃ for 1 h has little effect on the tensile properties at room temperature of the steel,but can significantly improve the room temperature impact properties.
作者
逯红果
王壮壮
殷凤仕
冯柳
薛冰
马中钢
LU Hong-guo;WANG Zhuang-zhuang;YIN Feng-shi;FENG Liu;XUE Bing;MA Zhong-gang(School of Chemical Engineering, Shandng University of Tecnology, Zibo 255049, China;School of Mechanical Engineering, Shandng University of Tecnology, Zibo 255049, China;Analysis & Testing Center, Shandng University of Tecnology, Zibo 255049,China;Shandong Ruitai New Material Technology Co Ltd, Yiyuan 256100, China)
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2018年第4期100-106,共7页
Transactions of Materials and Heat Treatment
基金
淄博市校城融合发展计划(2017ZBXC082)
山东省自然科学基金面上项目(ZR2016EMM01)
关键词
Δ-铁素体
回火
马氏体耐热钢
冲击断裂
δ-ferrite
tempered
martensitic heat resistant steel
impact fracture