期刊文献+

Dually flat general spherically symmetric Finsler metrics

Dually flat general spherically symmetric Finsler metrics
原文传递
导出
摘要 Dually flat Finsler metrics arise from information geometry which has attracted some geometers and statisticians. In this paper, we study dually flat general spherically symmetric Finsler metrics which are defined by a Euclidean metric and two related 1-forms. We give the equivalent conditions for those metrics to be locally dually flat. By solving the equivalent equations, a group of new locally dually flat Finsler metrics is constructed. Dually flat Finsler metrics arise from information geometry which has attracted some geometers and statisticians. In this paper, we study dually flat general spherically symmetric Finsler metrics which are defined by a Euclidean metric and two related 1-forms. We give the equivalent conditions for those metrics to be locally dually flat. By solving the equivalent equations, a group of new locally dually flat Finsler metrics is constructed.
出处 《Science China Mathematics》 SCIE CSCD 2018年第4期769-782,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11371209) K. C. Wong Magna Fund in Ningbo University
关键词 Finsler metric general spherically symmetric dually flat Euclidean metric 度量标准 扁平 对称 球状 欧几里德几何学 形式定义 相等 二相
  • 相关文献

参考文献2

二级参考文献14

  • 1Zhongmin SHEN.Riemann-Finsler Geometry with Applications to Information Geometry[J].Chinese Annals of Mathematics,Series B,2006,27(1):73-94. 被引量:28
  • 2Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000.
  • 3Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000.
  • 4Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002.
  • 5Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12.
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268.
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program.
  • 8Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116.
  • 9Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753.
  • 10Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部