期刊文献+

基于长短时记忆网络的工业控制系统入侵检测 被引量:18

Intrusion Detection of Industrial Control System Based on Long Short Term Memory
原文传递
导出
摘要 针对传统入侵检测方法无法有效处理工业控制系统(ICS)海量、高维的网络流量数据问题,提出了基于长短时记忆网络(LSTM)的工控入侵检测技术.首先,由于原始数据集存在数据样本不平衡问题,采用合成少数类过采样技术(SMOTE)对数据进行预处理.然后,通过固定其它参数不变而变化一种参数和交叉验证的方式选择相对最优的LSTM模型.最后,在工控网络标准数据集上将本文算法与传统入侵检测方法进行对比实验.结果表明,对预处理后数据,基于LSTM的工控入侵检测方法比传统方法具有更高的准确率. We propose an industrial control system intrusion detection method based on long short term memory( LSTM) networks to handle massive,high-dimensional network traffic data samples in the industrial control system( ICS). Firstly,we employed the synthetic minority oversampling technique since the original data set has imbalanced samples. Then,we optimized the LSTM model the cross-validation method. Finally,a comparison experiment with the traditional intrusion detection method is investigated using the standard industrial data set. The results show that the LSTM-based intrusion detection method had a higher accuracy than the traditional method after data preprocessing.
作者 於帮兵 王华忠 颜秉勇 YU Bangbing;WANG Huazhong;YAN Bingyong(Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, Chin)
出处 《信息与控制》 CSCD 北大核心 2018年第1期54-59,共6页 Information and Control
基金 国家自然科学基金青年基金资助项目(51407078)
关键词 工业控制系统 入侵检测 不平衡数据 深度学习 长短时记忆网络 industrial control system intrusion detection imbalanced data deep learning long short term memory
  • 相关文献

参考文献4

二级参考文献40

  • 1司马莉萍,贺贵明,陈明榜.基于Modbus/TCP协议的工业控制通信[J].计算机应用,2005,25(B12):29-31. 被引量:49
  • 2潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 3黄谦,王震,韦韬,陈昱.基于One-class SVM的实时入侵检测系统[J].计算机工程,2006,32(16):127-129. 被引量:12
  • 4倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:68
  • 5Garcia-Teodoro P, Diaz-Verdejo J, Macia-Fernandez G, et al. Anomaly-based network intrusion detection: Techniques, systems and challen- ges[J]. Computers & Security, 2009, 28(1/2) : 18 -28.
  • 6Papa S M. A behavioral intrusion detection system for SCADA systems[ D ]. Dallas, TX, USA: Southern Methodist University, 2013.
  • 7Zhu B, Sastry S. SCADA-specific intrusion detection/prevention systems: A survey and taxonomy [ C ]//Proceedings of the 1st Workshop on Secure Control Systems (SCS). Piscataway. NJ LSA: IEEE, 2010:1 - 16.
  • 8Yasakethu S L P, Jiang J. Intrusion detection via machine learning for SCADA system protection [ C ]//Proceedings of the 1 st International Symposium for ICS & SCADA Cyber Security Research. Leicester, UK: BCS, 2013:101 -105.
  • 9Xiao Y C, Wang H G, Zhang L, et al. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to faultdetection[ J]. Knowledge-Based Systems, 2014, 59 : 75 - 84.
  • 10Winter P, Hermann E, Zeilinger M. Inductive intrusion detection in flow-based network data using one-class support vector machines [ C ]// Proceedings of the 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS). Piscataway, NJ, USA : IEEE, 2011:1-5.

共引文献65

同被引文献119

引证文献18

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部