期刊文献+

晚松人工林株间株内球果及种子形态变异研究 被引量:2

Research of variation for morphological traits of cone and seed among individual and within a single tree of Pinus rigida plantation
下载PDF
导出
摘要 通过在晚松分布的江西峡江地区分株采样,对晚松球果及种子形态性状进行统计分析,开展晚松球果及种子性状在株间和株内的差异性研究。表型变异分析结果表明,大部分性状在株间和株内差异明显,晚松球果及种子形态性状在株间、株内存在丰富的变异;球果和种子形态性状间的相关分析显示,晚松球果越大,果质量越重,相应的其种子也越大,种子单粒质量也越重。种子单粒质量的多元回归分析结果表明,果质量、种长、种厚及种长×种宽×种厚4个性状的总贡献率达92.1%;建立这4个性状与种子单粒质量的线性回归模型,发现果质量和种长×种宽×种厚(0.618和0.666)对种子单粒质量的预测效果要优于种长和种厚(0.529和0.428)。 Collecting samples from the distribution of Pinus rigida in Xiajiang Jiangxi area,the morphological traits of cone and seed were analyzed statistically,and were applied to study the phenotypical variationamong individual and within a single tree.Results from phenotypic variation analysis indicated that there were significant differences for most traits among individual and within a single tree,which means that there were great differences for morphological traits of cone and seed.Correlations between all the thirteen traits showed that the larger and heavier the cone,larger and heavier the seed would be.The results of multivariate regression analysis showed that seed length,seed thickness,cone weight and seed length × seed width × seed thickness could explain 92.1% of the equation.Linear regression equations between the four traits and single seed weight were constituted,and the results showed that the coefficients of determination of linear regression equation between single seed weight and seed length,seed thickness(0.529 and 0.428)were smaller than those of cone weight and seed length × seed width × seed thickness(0.618 and 0.666).
作者 赖猛 胡冬南 易敏 刘苑秋 LAI Meng;HU Dongnan;YI Min;LIU Yuanqiu(College of Landscape Architecture and Art, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, Chin)
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2018年第1期22-28,共7页 Journal of Central South University of Forestry & Technology
基金 江西省科技成果重点转移转化计划项目"能源树种晚松繁育与定向培育关键技术推广示范"(20143BBI90009)
关键词 晚松 球果 种子 表型变异 相关关系 线性回归 Pinus rigida cone seed phenotypical variation correlation linear regression
  • 相关文献

参考文献21

二级参考文献238

共引文献319

同被引文献55

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部