期刊文献+

基于稀疏自动编码器与FA-KELM的滚动轴承故障诊断 被引量:5

Rolling Bearing Fault Diagnosis based on Sparse Auto-encoder and FA-KELM
下载PDF
导出
摘要 提取滚动轴承有效的故障特征参数是轴承故障诊断重要的组成部分,为改善核极限学习机(Kernel Extreme Learning Machine,KELM)高维数据特征选取的问题,提出一种结合稀疏自动编码器(Sparse Auto-Encoder,SAE)与KELM的方法。首先,提取振动信号的时域、频域和时频域特征构成高维特征向量;其次,采用多层SAE融合高维特征来消除特征的冗余性;最后,采用融合后的特征训练KELM,得到故障诊断模型。针对KELM对参数敏感的缺陷,采用萤火虫算法(IF)进行参数优化。为评估方法有效性,采用实验数据进行测试,并与传统KELM方法进行比较,结果显示该方法具有更好准确性和稳定性。 Extracting effective rolling bearing fault feature parameters is an important part of the bearing fault diagnosis. In order to improve the high-dimensional data feature selection of kernel extreme learning aachine(KELM), a novel method of combining sparse auto-encoder(SAE) with KELM was proposed. Firstly, the vibration signal of time domain, frequency domain and time-frequency domain features were extracted to constitute a high-dimensional feature vector. Then, multi-layer SAE fusion was used to eliminate the redundancy of the features. Finally, the fused characteristics were used to train the KELM and the fault diagnosis model was obtained. According to the sensitivity of KELM to parameters, the firefly algorithm was used to optimize the parameters. To assess the validity of this method, the laboratory test data was adopt to compare the proposed method with the traditional KELM. The results show that this method has better accuracy and stability.
作者 敦泊森 柳晨曦 王奉涛 DUN Bosen;LIU Chenxi;WANG Fengtao(Institute of Vibration Engineering, Dalian University of Technology, Dalian 116023, Liaoning China)
出处 《噪声与振动控制》 CSCD 2018年第A02期678-682,共5页 Noise and Vibration Control
关键词 振动与波 滚动轴承 稀疏自动编码器 核极限学习机 特征提取 vibration and wave rolling bearing sparse auto-encoder kernel extreme learning machine (KELM) feature extraction
  • 相关文献

参考文献5

二级参考文献57

  • 1姜锐红,刘树林,刘颖慧,唐友福.基于CPWP混合原子分解的滚动轴承故障诊断方法研究[J].振动与冲击,2013,32(23):48-51. 被引量:2
  • 2吴立增,朱永利,苑津莎.基于贝叶斯网络分类器的变压器综合故障诊断方法[J].电工技术学报,2005,20(4):45-51. 被引量:57
  • 3金玉兰,蒋祖华,侯文瑞.以可靠性为中心的多部件设备预防性维修策略的优化[J].上海交通大学学报,2006,40(12):2051-2056. 被引量:40
  • 4胡英奇,刘建庸.马尔可夫决策过程引论[M].西安:西安科技大学出版社,2000.
  • 5DEKKER R,SCHOUTEN F V D,WILDEMAN R.Areview of multi-component maintenance models witheconomic dependence[J].Mathematical Methods ofOperations Research,1997,45(3):411-435.
  • 6WANG Hongzhou.A survey of maintenance policies ofdeteriorating systems[J].European Journal of OperationalResearch,2002,139(1):469-489.
  • 7KOBBACY K A H,MURTHY D N P.Complex systemmaintenance handbook[M].London:Springer Verlag,2008.
  • 8BERG M.Optimal replacement policies for two-unitmachines with Increasing running costs-I[J].StochasticProcesses and Applications,1976,5(2):89-106.
  • 9ZHENG X,FARD N.A maintenance policy forrepairable systems based on opportunistic failure ratetolerance[J].IEEE Transactions on Reliability,1991,40(3):237-244.
  • 10CASTAINER B,GRALL A,BERENGUER C.Acondition-based maintenance policy with non-periodicinspections for a two-unit series system[J].ReliabilityEngineering and System Safety,2.

共引文献153

同被引文献66

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部