期刊文献+

用BP网络预测粉煤灰混凝土的渗透性 被引量:3

To Forcast Permeability of Fly Ash Concrete With Neural Network
下载PDF
导出
摘要 渗透性是评价高性能混凝土的重要指标之一。本文通过建立BP网络模型 ,对掺粉煤灰高性能混凝土的氯离子渗透性进行预测 ,结果表明 。 Permeability is one of the important target to assess High Performance Concrete. This paper is about to forcast chlorine ion permeability of fly ash concrete through building BP network model. The result indicates that Neural Network has bright application prospects in forcast character of High Performance Concrete.
出处 《粉煤灰综合利用》 CAS 2002年第4期37-38,共2页 Fly Ash Comprehensive Utilization
关键词 BP网络 预测 煤煤灰混凝土 渗透性 neural network permeabilioty forcast
  • 相关文献

同被引文献15

  • 1曹一波,谢小鹏.基于最小二乘支持向量机的磨损预测[J].润滑与密封,2007,32(2):138-141. 被引量:20
  • 2吴德会.基于最小二乘支持向量机的铣削加工表面粗糙度预测模型[J].中国机械工程,2007,18(7):838-841. 被引量:27
  • 3马保国.海洋高性能混凝土(MHPC)的研究[D].武汉:武汉理工大学,2000.MA Bao-guo. Study on ocean high performance concrete[D].Wuhan: Wuhan Technology and Science University, 2000.
  • 4T Zhang, O E Gjorv, Diffusion behavior of chloride ions in concrete [J] .C.C,R, , 1996, 26 (6). 907-917.
  • 5R K Dhir, M R Jones, S L D Ng, Prediction of total chloride content profile and concentration/time-dependent diffusion coefficient for concrete[J]. Magazine of Concrete Research, 1998, (1): 37-48.
  • 6P S Mangat, B T Molloy, Prediction of long term chloride concentration in concrete [J] , Materials and Structures, 1994, 27. 338-346.
  • 7P B Bamforth. The deviation of input data for modeling chloride ingress from eight-year UK coastal exposure [J] . Magazine of Concrete Research, 1999, (2): 87-96.
  • 8V N Vapnik, The nature of statistical learning theory [M] . New York: Spring-Verlag, 1999.
  • 9V N Vapnik. An overview of statistical learning theory [J] . IEEE Transaction Neural Networks, 1999, 10 (5) : 988-999.
  • 10赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测[J].大连理工大学学报,2002,42(1):83-88. 被引量:23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部