期刊文献+

一种多特征融合的场景分类方法 被引量:7

Multi-feature Fusion Method for Scene Classification
下载PDF
导出
摘要 针对图像当中的不同对象,各种特征的优势各不相同,彼此之间存在互补现象.因此,提出一种多特征融合的图像场景分类方法.首先分别提取图像的GIST特征、SIFT特征和PHOG特征;然后将SIFT特征进行局部约束线性编码,并基于空间金字塔模型进行最大池化生成稀疏向量表示;接着采用串联的方法将GIST特征、SIFT特征稀疏向量表示和PHOG特征进行特征融合;最后将融合特征与类标签信息一起输入到线性SVM进行分类.多特征融合的图像场景分类方法,充分考虑了各个特征之间的优势以及图像原有特性和单词空间分布,能够有效的达到特征互补.实验结果表明,与其他分类方法相比,该方法具有较好的分类性能. In view of the different objects in the image,the advantages of various features are different,and there is complementarity between each other,this paper proposed a multi-feature fusion scene classification method. Firstly,the GIST feature,SIFT feature and PHOG feature are extracted respectively; Then,the SIFT features are encoded by the locality-constrained linear coding and max-pooled based on the spatial pyramid model to generate sparse vector representations; Next,The fusion feature of GIST feature,SIFT feature sparse vector and PHOG feature is performed by serial method; Finally,the fusion feature and the class label information are used as input to train linear SVM classifiers. The image scene classification approach based on multiple features fusion takes full account of the advantages of each feature. The original characteristics and word spatial distribution of the image can achieve feature complementation effectively. The experimental results show that the classification accuracy of the proposed method is improved compared with other methods.
作者 李志欣 李艳红 张灿龙 LI Zhi-xin;LI Yan-hong;ZHANG Can-long(Guangxi Key Lab of Multi-source Information Mining and Security ,Guangxi Normal University, Guilin 541004, China;Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, Guilin 541004, China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第5期1085-1091,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61663004 61363035 61365009)资助 广西自然科学基金项目(2016GXNSFAA380146)资助 广西多源信息挖掘与安全重点实验室主任基金项目(16-A-03-02)资助 广西学位与研究生教育改革专(JGY2015031)资助
关键词 场景分类 空间金字塔 线性分类器 支持向量机 特征融合 scene classification spatial pyramid linear classifier support vector machine feature fusion
  • 相关文献

参考文献6

二级参考文献64

  • 1Torralba A,Fergus R,and Freeman W T.80 million tiny images:Alarge data set for nonparametric object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 2Li F F and Perona P.A Bayesian hierarchical model for learning natural scene categories[C].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05),San Diego,CA,USA,2005,Vol.2:524-531.
  • 3Grin G,Holub A,and Perona P.The caltech-256.Technical report,Caltech,2007.
  • 4Lazebnik S,Schmid C,and Ponce J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C].Proceedings of the IEEE Computer Society Conference of Computer Vision and Pattern Recognition(CVPR'06),New York,USA,June 17-22,2006,Vol 2:2169-2178.
  • 5Nilsback M E and Zisserman A.Automated flower classification over a large number of classes[C].Proceedings of Computer Vision,Graphics and Image Processing in Indian,2008:722-729.
  • 6Agarwal S and Awan A.Learning to detect objects in images via a sparse,part-based representation[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(11):1475-1490.
  • 7Tomasik B,Thiha P,and Turnbull D.Tagging products using image classification[C].Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval,Boston,MA,USA,2009:792-793.
  • 8Nowak E,Jurie F,and Triggs B.Sampling strategies for bag-of-features image classification[C].9th European Conference on Computer Visionin Computer Vision ECCV 2006,Graz,Austria,May 7-13,2006:490-503.
  • 9Boiman O,Shechtman E,and Irani M.In defense of nearest-neighbor based image classification[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR'08),Anchorage,Alaska,USA,June 23-28,2008:1-8.
  • 10Duda R O,Hart P E,and Stock D G.Pattern Classification(2nd Edition)[M].New York,USA,Wiley Interscience,2001:536-539.

共引文献70

同被引文献35

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部